

Index

Executive Summary​ 3

Introduction​ 4

What is a ModelKit?​ 6

Development Workflow​ 10

Securing the Project​ 17

Production Deployment on Kubernetes​ 26

Team Collaboration and Governance​ 35

Troubleshooting and Debugging​ 37

Conclusion​ 41

Next Steps​ 43

Technical Guide: End-to-End Kubernetes ML 2

Executive Summary

Most enterprises deploy AI/ML using makeshift

combinations of git repositories, object storage, and manual

scripts. When models fail in production, teams waste hours

determining which code version, data file, and configuration

were actually deployed together. KitOps ModelKits solve this

by packaging complete AI/ML projects (models, code, data,

configs, dependencies) as single, versioned OCI artifacts

that work with existing container registries, Kubernetes

clusters, and CI/CD pipelines. One immutable reference

replaces coordinating multiple systems to track project state.

This guide shows platform engineers and ML practitioners

how to package projects as ModelKits, deploy them on

Kubernetes, and integrate them into production workflows. A

European logistics company managing hundreds of models

eliminated multi-day debugging sessions by switching from

custom scripts to ModelKits. A US research laboratory chose

self-hosted ModelKit registries for air-gapped CI/CD with

sensitive data. The pattern: teams reduce operational

overhead and improve deployment reliability and security by

treating AI/ML projects as versioned units rather than loosely

coordinated files, using infrastructure and practices they

already have.

Technical Guide: End-to-End Kubernetes ML 3

Introduction

Moving AI/ML projects from development to production

remains one of the hardest problems in enterprise

technology. Data scientists build models that work perfectly

on their laptops, but platform engineers struggle to deploy

them reliably. Teams waste weeks debugging why a model

that worked in staging fails in production.

The core problem isn't the model itself - it's everything

around it. Models don't run in isolation. They need specific

versions of code, particular datasets (or references to them),

exact configurations, and compatible dependencies. Change

any piece and behavior changes. Most teams handle this with

a combination of git repositories, model and feature stores,

container registries, and manual deployment scripts.

Throughout this guide, we use "AI/ML project" to refer to the

complete set of versioned artifacts required to reproduce a

working system: the model weights, training and inference

code, datasets (or references to them), configuration files,

prompts, dependencies, and environment specifications. This

matters because deploying AI/ML successfully means

deploying all of these components together, not just a model

file.

When we refer specifically to "models," we're talking about

the trained weights and architecture - the narrow technical

artifact that gets loaded into memory for inference or

training.

Technical Guide: End-to-End Kubernetes ML 4

This guide shows you how to use KitOps and ModelKits to

package, version, and deploy complete AI/ML projects on

Kubernetes. You'll learn how to move from experimental

workflows to production-grade deployment practices using

tools your platform team already understands.

Technical Guide: End-to-End Kubernetes ML 5

What is a ModelKit?

A ModelKit is a packaged AI/ML project stored as an OCI

(Open Container Initiative) artifact - the same standard used

for container images. It contains everything needed to

reproduce your project's state at any point: model files, code,

datasets, configuration, and dependency specifications.

A note on terminology: ​
Most ML tooling talks about "models" because that's what

data scientists focus on during development. But

operationalizing AI/ML means dealing with everything that

surrounds the model - code, data, configs, dependencies. We

use "AI/ML project" throughout this guide because getting

value from AI requires not only the model, but the agents,

workflows, and services around it that drive the customer

outcome. The whole project, then, is what needs to move

from development to production. ModelKits are unique in

versioning and packaging the entire project, not just the

model weights or dataset.

Think of a ModelKit as a deployment unit. Instead of tracking

"which model version, which code commit, which config file"

separately, you track one immutable reference. Your laptop,

your colleague's laptop, staging, and production can all pull

the exact same project state.

​

Technical Guide: End-to-End Kubernetes ML 6

Why OCI Artifacts?

OCI is the standard for distributing container images: every

container registry supports them; your security systems

already scan them; your CI/CD pipelines already move them.

Using OCI for AI/ML projects means you leverage existing

infrastructure instead of building parallel and disjointed

systems.

ModelKits package AI/ML projects just like container images

package applications. Both use the same distribution

mechanism, which means:

■​ Standard (and always consistent) registry authentication

and access controls

■​ Built-in content addressing guarantees integrity

■​ The registry’s content addressable storage automatically

deduplicates assets saving storage and egress costs

■​ Native support comes for free with Kubernetes and other

orchestration platforms​

Best of all, ModelKits can be used with any container registry

whether cloud hosted, private, on-premises, or open source.

For organizations requiring enhanced security and

compliance capabilities, Jozu Hub provides an on-premises

registry specifically designed for AI/ML workloads.

Technical Guide: End-to-End Kubernetes ML 7

Unlike generic container registries, Jozu Hub adds

automated security scanning for model-specific

vulnerabilities, compliance reporting for regulated industries,

and deployment controls that prevent tampered or

unapproved models from reaching production. Teams use the

same Kit CLI and workflows while gaining enterprise-grade

security features.

Technical Guide: End-to-End Kubernetes ML 8

ModelKit Structure

A ModelKit contains:

Model files: Weights, architectures, and model-specific

artifacts in standard formats (ONNX, PyTorch, TensorFlow,

etc.)

Code: Training scripts, inference handlers, preprocessing

logic, and any custom code needed to use the model

Datasets: Training data, validation sets, or references to data

locations with versioning information

Configuration: Hyperparameters, environment settings,

feature definitions, and deployment specifications

Dependencies: Language runtimes, libraries, and system

packages with exact versions

Documentation & Prompts: System and base prompts,

README, installation and testing guides, or anything else

Metadata: Ownership and lineage information, training

metrics, model cards, and documentation

Each component is versioned together. When you reference

ModelKit version 1.2.3, you get all of these pieces in their

exact state from that version.

Not all ModelKits need to contain all components - it’s

common to “layer” ModelKits. For example, in a fine-tuned

RAG context that project’s ModelKit may reference a

canonical dataset ModelKit and a foundational model’s

ModelKit.

Technical Guide: End-to-End Kubernetes ML 9

Development Workflow

Creating Your First ModelKit

Start with a trained model and its associated project files.

The Kit CLI packages everything into a ModelKit.

Install the Kit CLI:

Create a Kitfile describing your project:

Technical Guide: End-to-End Kubernetes ML 10

Pack and push the ModelKit:

Your complete project is now in your registry as an

immutable, versioned artifact.

Why Not Just Use Experiment Trackers?

Experiment tracking tools (MLflow, Weights & Biases,

Neptune) excel at comparing model performance during

development. They version model weights and log

hyperparameters effectively. But they weren't designed to

version the complete project required for production

deployment.

The gap shows up when you promote a model to production.

Your experiment tracker tells you which model performed

best. It doesn't tell you which version of the preprocessing

code to deploy with it, which configuration file controlled

feature engineering, or which dataset version influenced

model behavior. Teams bridge this gap manually - tracking

code versions in git, config versions in separate systems, and

hoping everything aligns correctly in production.

Technical Guide: End-to-End Kubernetes ML 11

ModelKits package the complete project state that

experiment trackers don't capture. You still use MLflow or

W&B for comparing experiments, but add ModelKits when

you need to deploy, version, and reproduce the entire project

- not just the model weights.

Local Development and Testing

You interact with ModelKits like a container - by pushing and

pulling from a registry.

To pull a ModelKit from the registry onto your local file

system:

Then unpack only the model to the local fraud-project

directory:

The unpack operation recreates the exact project structure

from the ModelKit. Every file, every dependency version,

every configuration setting matches what was packed.

Optionally, you can extract only those parts of the ModelKit

you need using filters.

Technical Guide: End-to-End Kubernetes ML 12

This solves the "works on my machine" problem. When a

colleague pulls the same ModelKit, they get identical project

state. When you deploy to staging or production, those

environments get the same state. No drift, no surprises.

One government SI managing hundreds of models across

their supply chain optimization platform switched from

scattered packaging repositories to ModelKits. Their biggest

win wasn't faster deployments - it was eliminating the "which

version of which data file went with which model" debugging

sessions that previously consumed hours or days of

engineering time.

Updating and Versioning

When you update your project, create a new ModelKit

version:

The previous version (1.0.0) remains available. You can run

both in production, roll back instantly, or compare behavior

across versions. Because ModelKits are immutable, version

1.0.0 will always contain exactly what it contained when you

first pushed it.

Technical Guide: End-to-End Kubernetes ML 13

Handling Large Datasets

OCI registries handle multi-gigabyte artifacts efficiently -

they're designed for container layers that can reach tens of

gigabytes. ModelKits leverage the same content-addressable

storage and layer deduplication that makes container

distribution fast and inexpensive.

For datasets under 50GB, include them directly in the

ModelKit. The registry's deduplication means you only store

each unique chunk once. If 90% of your training data stays

constant between versions, you only pay storage costs for the

10% that changed.

For datasets over 50GB or datasets that change frequently,

use references instead of embedding.

The ModelKit stores the reference, version, and content hash.

Your deployment pulls data from the source (S3, data lake,

feature store) but the ModelKit still captures which exact

dataset version the model expects. This gives you versioning

without storage duplication.

Production deployments commonly use dataset references.

Development and testing environments often embed smaller

validation datasets directly for reproducibility.

Jozu Hub tracks both embedded datasets and dataset

references, maintaining lineage even when data lives in

external systems. When a ModelKit references an S3 bucket

or feature store, Jozu Hub logs the reference details, version

hash, and access timestamp. During audits, you can prove

which exact data version trained each model without storing

duplicate copies.

Technical Guide: End-to-End Kubernetes ML 14

Development Patterns

Teams use three main patterns with ModelKits, each suited

to different workflows and compliance requirements:

Automatic Packaging Post-Training: ​
Create a new ModelKit automatically when training runs

complete successfully. The SDK packages resulting assets

and pushes them to the registry without manual intervention.

This pattern works for teams wanting immediate packaging

or needing all runs packaged for compliance reasons.

Selective Packaging of Champion Models:​
Package only models meeting performance thresholds. The

SDK can query experiment tracking tools for runs matching

specific criteria - accuracy above threshold, loss below target

- then package only qualifying models. This keeps production

registries focused on production-ready candidates.

Milestone-Based Packaging:​
Most teams create ModelKits at key milestones: when

validation passes, metrics meet thresholds, or models are

ready for promotion to staging. This balances governance

benefits with development velocity. During active

experimentation, artifacts remain in existing tools (MLflow,

feature stores, S3). When ready for promotion, package

everything into a ModelKit for reliable handoff to downstream

teams.

For regulated industries, automatic packaging of all runs

provides complete auditability. For non-regulated industries,

milestone-based packaging minimizes workflow disruption

while enabling reliable production deployments.

Technical Guide: End-to-End Kubernetes ML 15

Best Practices

■​ Version everything together from the start - retroactive

versioning is painful

■​ Use semantic versioning for ModelKits to signal breaking

changes

■​ Tag ModelKits with meaningful metadata for searchability

■​ Automate ModelKit creation in CI pipelines rather than

manual packing

■​ Test unpacked ModelKits in staging before production

deployment

The goal isn't to replace your existing ML infrastructure - it's

to give you a better way to package and distribute AI/ML

projects through infrastructure you already have. Container

registries, Kubernetes, CI/CD pipelines - ModelKits work with

the tools your platform team already maintains.

Technical Guide: End-to-End Kubernetes ML 16

Securing the Project

Registry Integration and Authentication

Jozu Hub extends your existing OCI registry with enterprise

governance capabilities. Most organizations attach Jozu Hub

to their current registry infrastructure—Amazon ECR, JFrog

Artifactory, or similar—rather than deploying a separate

system. This keeps authentication and authorization

unchanged. ModelKits use the same RBAC policies, identity

management, and access controls already governing

container images.

Teams typically separate projects through registry

namespaces. The fraud-detection team maintains their

ModelKits independently from customer-segmentation, yet

both inherit the same security scanning, policy enforcement,

and audit logging. This structure provides autonomy within

governance boundaries without fragmenting infrastructure.

Automated Security Scanning

Every ModelKit pushed to Jozu Hub triggers multi-layered

security analysis targeting AI/ML-specific attack vectors for

generative AI and machine learning models. This addresses

Technical Guide: End-to-End Kubernetes ML 17

the unique security challenges that emerge when models

become production systems - threats that traditional

vulnerability scanning misses entirely.

The scanning framework employs five specialized scanners

operating in concert. Each addresses specific attack vectors

while maintaining complete on-premises deployment

capability - critical for organizations with strict data

sovereignty requirements. All tools run self-hosted with no

dependency on external APIs or cloud services, ensuring

compliance with regulatory requirements while keeping

ModelKit data entirely within organizational infrastructure.

Attack Vector Coverage

Supply Chain Protection: ​
Serialized model files in pickle, joblib, HDF5, ONNX, and

TensorFlow SavedModel formats can execute arbitrary code

during loading. Static analysis examines these files for

malicious deserialization payloads and embedded code

before they reach runtime environments. This prevents

compromised models from entering your pipeline disguised

as legitimate artifacts. Behavioral validation provides

secondary verification by testing whether models exhibit

suspicious runtime behavior patterns.

Content Safety Validation: ​
Models and their associated data undergo safety checks

across multiple dimensions. Prompt templates get scanned

for injection patterns that could override system instructions.

Technical Guide: End-to-End Kubernetes ML 18

Training data gets analyzed for PII exposure, toxic content,

and embedded secrets. Configuration files get checked for

exposed credentials. Code artifacts get examined for

malicious patterns. This multi-layer scanning ensures

ModelKits don't inadvertently contain sensitive information

or harmful content that could compromise production

systems or violate data protection regulations.

Behavioral Red-Teaming: ​
Automated probes test how models respond to adversarial

inputs through systematic attack simulation. Prompt

injection testing attempts to override system instructions

with malicious prompts. Policy evasion probes try to trick

models into violating guidelines. Data exfiltration testing

checks whether attackers can extract training data through

carefully crafted queries. System prompt leakage detection

verifies whether users can discover internal instructions.

Each probe generates risk scores that inform deployment

decisions—models failing critical probes get blocked from

production automatically.

Adversarial Robustness Testing: ​
Sophisticated attacks attempt to fool models through

carefully crafted inputs. Evasion attack testing evaluates

whether adversarial examples can cause misclassification.

Poisoning vulnerability detection analyzes training data for

evidence of manipulation. Model extraction resistance

testing measures whether attackers can steal model logic

through repeated querying. Membership inference testing

determines if attackers can discover whether specific data

was in the training set. This deep analysis is critical for

models making security decisions, processing financial

transactions, or handling untrusted user input.

Technical Guide: End-to-End Kubernetes ML 19

Privacy Protection: ​
Models can leak sensitive information through multiple

channels. PII scanning examines training data, prompts, and

configuration files for exposed personal information—names,

addresses, financial data, health records—that shouldn't be in

production systems. Membership inference testing

determines whether attackers can discover if specific

individuals' data was included in training sets, a critical

concern under GDPR and similar privacy regulations. Data

leakage detection identifies whether models inadvertently

memorize and reproduce training data when queried with

specific prompts. This dual-layer approach catches privacy

risks before they become compliance violations or security

incidents.

Model Integrity: ​
Compromised models pose existential risks to AI systems.

Backdoor detection searches for hidden triggers embedded

in model weights that could activate malicious behavior when

specific inputs appear. These backdoors can survive training

and remain dormant until exploited. Poisoning vulnerability

analysis examines training data for evidence of

manipulation—mislabeled examples, adversarial samples, or

biased data injected to corrupt model behavior. Statistical

analysis detects anomalies indicating poisoning attempts.

While detection is moderate (sophisticated backdoors and

poisoning can evade analysis), the scanning provides

baseline protection against known attack patterns and

obvious manipulation attempts.

Technical Guide: End-to-End Kubernetes ML 20

Regression Prevention: ​
Reproducible test suites measure jailbreak resistance and

prompt robustness across model iterations. This ensures

models maintain consistent security posture as they evolve

and that updates don't introduce new vulnerabilities. Tests

run automatically on every ModelKit push, catching

degradation before it reaches production.

Policy-Driven Scanning Tiers

Not every ModelKit requires identical scrutiny. The policy

engine routes ModelKits to appropriate scanning tiers based

on configurable YAML policies that evaluate model

characteristics and deployment context.

Essential Tier provides rapid baseline security for

experimental models during active development. ​
Supply chain attack checks verify model file integrity.

Optional content safety scanning adds basic validation for

PII and secrets. This tier completes within 5 minutes,

enabling fast iteration without sacrificing fundamental

security. It targets models that won't leave development

environments but still need protection against obvious

threats.

Standard Tier balances thoroughness with efficiency for

staging deployments and integration testing. ​
Required checks include supply chain protection and

comprehensive content safety validation. Optional

assessments add behavioral red-teaming and adversarial

testing based on model type and risk profile.

Technical Guide: End-to-End Kubernetes ML 21

This 15-minute scan provides solid coverage for most

production candidates. It's the default tier for models moving

from development to QA or staging environments where

they'll face more realistic testing conditions.

Comprehensive Tier applies maximum scrutiny to

critical production models serving real users or handling

sensitive data. ​
All security checks execute with extensive test suites.

Adversarial robustness testing runs with GPU acceleration to

handle computationally intensive attack simulations within

acceptable timeframes. While requiring up to 60 minutes,

this tier ensures models meet the highest security standards

for regulated deployments. It's mandatory for models in

healthcare, financial services, or other domains where model

failures carry serious consequences—both technical and

regulatory.

The policy engine selects tiers by evaluating multiple factors:

model size (larger models receive more thorough scanning),

deployment target (production tags trigger comprehensive

assessment), model type (LLMs and multimodal models

require specialized testing), and custom organizational

policies. For example, a policy might route all LLMs to

Comprehensive Tier regardless of size, or require Standard

Tier for any model tagged for customer-facing deployment.

Teams configure these rules through YAML policies that

adjust as requirements evolve, enabling governance without

blocking development velocity.

Technical Guide: End-to-End Kubernetes ML 22

Attack Vector Completeness and Limitations

This multi-dimensional scanning approach provides strong to

excellent coverage across most AI/ML security threats.

However, upload-time scanning has inherent limitations that

highlight the importance of defense in depth. Stateful attacks

involving multi-turn conversations or memory manipulation

cannot be fully tested without deployment context. These

require runtime monitoring to detect. Integration attacks

targeting plugin interactions or API abuse need actual

integrations to manifest. Performance attacks attempting

denial-of-service through resource exhaustion require actual

infrastructure to measure impact. Behavioral drift (models

changing behavior over time) only emerges during operation.

These limitations don't diminish the framework's value, they

define its role in a broader security strategy. Upload-time

scanning shifts security testing earlier in the cycle and

prevents known vulnerabilities from reaching production.

Runtime monitoring catches behavioral issues that only

emerge during operation. Together, they provide

comprehensive protection across the model lifecycle.

Security Attestations

Every scan generates cryptographically signed attestations

documenting results in a standardized JSON format.

Technical Guide: End-to-End Kubernetes ML 23

These attestations become immutable records attached to

ModelKits using Cosign, providing auditable evidence of

security assessments that can't be tampered with or forged.

The attestation captures comprehensive details: tool

identification with versions, ModelKit reference with

SHA-256 digest, metric definitions with pass/fail thresholds,

individual findings with severity levels (info, anomaly,

concern, error), and execution metadata including timing and

configuration. Each security check contributes one evaluation

run to a unified document, creating a complete security

picture for the ModelKit.

These attestations serve multiple purposes throughout the

deployment lifecycle. Deployment systems check attestations

before allowing production releases—no attestation or failed

checks mean no deployment, enforced at the infrastructure

level. Compliance audits use them as evidence of security

diligence, demonstrating that models underwent thorough

testing before serving users. Incident investigations

reference them to understand model vulnerabilities and trace

security decisions back to specific findings. The

cryptographic signatures ensure attestations haven't been

tampered with, maintaining chain of custody from scanning

through deployment and into audit review.

The framework evolves continuously as new attack vectors

emerge. The modular architecture enables adding new

security checks without disrupting existing workflows.

Scanner capabilities update automatically to detect the

latest attack patterns. Policies adjust to reflect changing

organizational requirements. The result: security that

improves over time while maintaining the same

interface—push a ModelKit, receive comprehensive security

assessment.

Technical Guide: End-to-End Kubernetes ML 24

Policy Enforcement and Governance

Approval workflows transform deployment from uncontrolled

progression to governed transition. A data scientist pushes a

model—it enters quarantine. Security scanning passes—it

awaits business approval. Manager approves—it becomes

eligible for staging. Each gate is enforced at the registry level

through policy evaluation.

Environment restrictions prevent models from jumping

stages. Development models cannot deploy to production.

Healthcare models require HIPAA attestations. Financial

models need SOX compliance checks. Jozu Hub blocks

non-compliant deployments automatically.

Compliance attestations attach to ModelKits as

cryptographically signed statements verifiable by auditors.

"This model was trained on anonymized data." "This model

passed fairness testing." "This model complies with GDPR."

These aren't code comments—they're signed claims with

chain of custody.

Technical Guide: End-to-End Kubernetes ML 25

Production Deployment on
Kubernetes

Basic Deployment Pattern

You can deploy a ModelKit to Kubernetes using standard

patterns. Here's a deployment for a model serving endpoint:

Technical Guide: End-to-End Kubernetes ML 26

The init container unpacks the ModelKit before the inference

server starts. The inference server loads the model, code,

and configuration from the unpacked location. Everything

needed to run the model is present and versioned together.

More importantly, everything can be tied back to the

ModelKit and even to the experiment run or notebook that

the ModelKit was built from!

Immutable Deployments

Traditional model deployment often looks like this: update a

model file in object storage, restart pods, hope the code still

matches. With ModelKits, you reference a specific version in

your deployment spec. That version never changes.

To update the ModelKit reference and apply the new

deployment:

Kubernetes handles the rollout. If something breaks, roll back

by reverting the deployment to reference the previous

ModelKit version. No hunting through logs to figure out which

S3 bucket had which model file.

Technical Guide: End-to-End Kubernetes ML 27

Integration with Model Serving Platforms

KServe's storage initializer architecture enables direct

ModelKit integration without custom serving code. A

ModelKit-specific storage initializer handles the kit://

protocol, pulling ModelKits from your registry, verifying their

SHA-256 digests, and unpacking artifacts into serving

containers. This maintains the security chain through to

inference - the same immutable artifacts that passed

security scanning are exactly what serves predictions.

Authentication leverages Kubernetes-native patterns. Service

accounts control which clusters can access which ModelKits.

Development clusters cannot pull production models.

Production clusters cannot access experimental models. This

enforces environment boundaries at the infrastructure level.

Technical Guide: End-to-End Kubernetes ML 28

The ModelKit URI (kit://myregistry.com/fraud-detection:1.0.0)

replaces traditional S3 URIs pointing to mutable buckets.

This single change transforms deployments from hopeful to

deterministic. The ModelKit structure ensures the URI points

to model weights, preprocessing code, configuration, and

documentation as a complete package.

Performance and Automation

ModelKit manifests (Kitfiles) can include resource

requirements from training, enabling KServe to allocate

appropriate CPU, memory, and GPU resources without

manual specification.

Performance optimization through caching reduces registry

load and deployment time. KServe's persistent volume

caching stores unpacked ModelKits locally. Subsequent

deployments check cache validity against SHA-256 digests

from your registry. Changed models trigger fresh pulls.

Unchanged models serve from cache. This balances security

verification with operational efficiency - every deployment

confirms artifact integrity without repeatedly downloading

gigabytes of unchanged model weights.

Technical Guide: End-to-End Kubernetes ML 29

Tracking Across Environments

Experiment tracking tools like MLflow or Weights & Biases

version models well. They're less helpful for versioning the

code that loads those models, the data that trained them, or

the configuration that controls behavior. When you promote a

model from staging to production, you're not just moving

model weights - you're moving an entire project.

ModelKits make this explicit. Your staging environment tests

ModelKit version x.y.z. If tests pass, production deploys the

same version x.y.z. Not a new model file with "hopefully the

same code" - the exact same immutable project package.

Several research laboratories working with sensitive data

chose self-hosted ModelKit registries specifically because

their CI/CD runs in air-gapped environments. They needed to

version and distribute complete AI projects without external

dependencies or cloud services. The OCI standard made this

straightforward with existing container registry infrastructure.

CI/CD Integration

Automated pipelines benefit most from project-level

versioning. When your training pipeline produces a new

model, you want to test the entire project - not just the model

weights.

Technical Guide: End-to-End Kubernetes ML 30

GitHub Actions Example

This pipeline trains a model, packages the complete project

into a ModelKit, and deploys it to staging. Adding the

specific SHA to the ModelKit reference (modelkit.SHA) ties

the deployment to a specific ModelKit version, giving you

complete traceability.

ModelKits can be used with any pipeline that can consume

containers or OCI Artifacts.

Technical Guide: End-to-End Kubernetes ML 31

Advanced Deployment Patterns

A/B testing through traffic splitting requires unambiguous

model identification. Tag-based promotion enables clear

experiment definition using KServe's traffic management:

The fraud-detection:champion ModelKit receives 80% of

traffic while fraud-detection:challenger receives 20%.

Metrics collection happens at the ModelKit level, enabling

direct comparison between versions. When the challenger

outperforms the champion, promotion means retagging - the

same immutable artifact that served 20% of traffic now

serves 100%.

Canary Deployments with Automated Rollback

Canary deployments reduce risk for critical models through

gradual rollout with automated rollback. New versions receive

Technical Guide: End-to-End Kubernetes ML 32

minimal traffic initially - 1% or less - with automatic rollback

triggers if error rates spike or latencies degrade. ModelKit

immutability guarantees rollback returns to an exact previous

state, not a reconstructed approximation.

KServe monitors metrics, compares against thresholds

defined in deployment policies, and reverts to the previous

ModelKit version if the canary fails validation. Because

ModelKits are immutable, these rollbacks complete in

seconds rather than minutes or hours.

Multi-Model Ensemble Serving

Complex AI systems often combine multiple models for

ensemble predictions. A fraud detection system might

combine transaction analysis, user behavior modeling, and

network graph analysis. Each model exists as a separate

ModelKit, versioned independently but deployed together:

Technical Guide: End-to-End Kubernetes ML 33

Metadata or tagging ensures compatible versions deploy as

a unit - transaction-analyzer:v3 only deploys with

behavior-model:v7, preventing version mismatches that

could degrade ensemble performance. Each component

ModelKit maintains its own security scanning results and

audit trail while functioning as part of a larger system.

Technical Guide: End-to-End Kubernetes ML 34

Team Collaboration and
Governance

Shared Project State

Making an AI project successful takes a village: data

scientists create ModelKits during development, ML

engineers test them in staging, platform engineers deploy

them in production, DevOps teams manage the registry, and

Security teams scan the artifacts. Everyone references the

same versioned project.

When someone asks "what's running in production," the

answer is an immutable ModelKit reference:

myregistry.com/fraud-detection:1.0.0. That reference tells you

everything: which model, which code, which data, which

configuration. Stop using spreadsheets to track deployment

versions and Slack messages asking "did we deploy the

model trained on the new data or the old data?"

Technical Guide: End-to-End Kubernetes ML 35

Audit and Compliance

Regulated industries need to answer questions like: "What

model version processed this transaction? What data trained

that model? Who approved the deployment?"

ModelKits provide project-level lineage. The Kitfile metadata

includes training information, model metrics, and authorship.

Registry access logs show who pushed and pulled which

versions, while Kubernetes labels tie running pods to specific

ModelKit versions.

When auditors ask for evidence, you can point to immutable

artifacts with complete provenance and lineage rather than

trying to reconstruct history from scattered logs and git

commits.

Technical Guide: End-to-End Kubernetes ML 36

Troubleshooting and Debugging

Version Comparison

When a newly deployed model behaves differently than

expected, you don’t need to hunt through multiple logs, just

compare ModelKit versions:

The kit diff command shows what changed between

versions in the terminal.

Jozu Hub provides a UI for visual comparison with

line-by-line diffs of changes: updated model files, modified

preprocessing code, different hyperparameters, dataset

changes, or prompt rewrites. Security scans run automatically

on each version, surfacing new vulnerabilities immediately.

You're not guessing what changed - you're examining the

immutable record of project state with full security context.

Technical Guide: End-to-End Kubernetes ML 37

Reproducing Issues Locally

To pull the exact ModelKit version running in production:

Now you have the production project state on your laptop.

Run the inference code with the production model and

configuration. Feed it the problematic input. Debug with full

context instead of trying to reproduce production conditions

from memory.

Rollback Procedures

Rolling back to the previous ModelKit version can be done

through your serving platform:

Kubernetes performs a standard rolling update back to the

working version. Because ModelKits are immutable, you know

exactly what you're rolling back to.

Technical Guide: End-to-End Kubernetes ML 38

Production Monitoring and Drift Detection

Prometheus metrics collection extends beyond standard

HTTP metrics to capture model-specific behavior. Prediction

latency distributions, confidence score patterns, feature value

ranges, and inference throughput all link back to ModelKit

versions, enabling version-specific analysis:

When metrics degrade after deploying

fraud-detection:SHA, teams can use the SHA to compare

the in-production ModelKit and diff against previous known

good deployments. Or, using the SHA and ModelKit trace

back to the experiment run that generated the model and

check runtime metrics against tested metrics to isolate the

regression.

Drift detection requires baseline comparisons that ModelKits

provide naturally. The validation datasets included in

ModelKits during development establish performance

baselines - expected accuracy, precision, recall, and

confidence distributions. Production predictions get

compared against these baselines through statistical tests

that identify significant deviations.

When drift exceeds configurable thresholds, automated

retraining pipelines trigger, creating feedback loops back to

development workflows. Automatic rollback triggers prevent

Technical Guide: End-to-End Kubernetes ML 39

prolonged outages when models degrade in production.

When error rates spike, latencies increase beyond SLAs, or

drift accelerates past emergency thresholds, KServe can

automatically revert to previous ModelKit versions.

This closes the loop from development through security to

production operations. Models packaged as ModelKits,

secured through scanning, promoted through pipelines, now

serve predictions with full observability and automated

recovery. The atomic unit established at the beginning - the

ModelKit - maintains its integrity and traceability through

every stage of the lifecycle.

​

Technical Guide: End-to-End Kubernetes ML 40

Conclusion:

Moving AI/ML projects from development to production

requires more than deploying model weights. Teams must

coordinate models, code, datasets, configurations, and

dependencies across environments while maintaining

security, auditability, and reproducibility. The traditional

approach of managing these components separately creates

operational overhead, increases debugging time, and

introduces deployment risk.

ModelKits solve this by treating the complete AI/ML project

as a single, versioned unit. By packaging everything needed

to reproduce a working system into an OCI artifact, teams

leverage existing container infrastructure instead of building

parallel systems. The same registries that store container

images now store complete AI/ML projects. The same CI/CD

pipelines that deploy applications now deploy models. The

same security scanning that protects code now protects AI

workloads.

This matters because it reduces the risk of production issues

and shortens time-to-recovery for when outages do happen.

The fact that it typically speeds time-to-production is a

bonus.

The operational benefits compound over time. Debugging

sessions that once took days now take hours because you

can compare exact project states across versions. Audit

preparation that once took weeks now takes days because

you have complete provenance for every deployed model.

Technical Guide: End-to-End Kubernetes ML 41

Deployment failures that once required hunting through

multiple systems now point to a single ModelKit reference.

For organizations requiring enhanced security and

compliance, Jozu Hub extends the ModelKit pattern with

automated vulnerability scanning, compliance reporting, and

deployment controls specifically designed for AI/ML

workloads in regulated industries. From five-layer security

scanning that catches AI-specific vulnerabilities to KServe

integration with automated drift detection, ModelKits

transform every stage of the ML lifecycle from fragile

coordination into reliable operations.

Technical Guide: End-to-End Kubernetes ML 42

Next Steps

Start with a single AI/ML project. Package it as a ModelKit.

Deploy it to a test Kubernetes cluster. Experience the

difference between managing versioned project state versus

manually coordinating model files, code, and configuration.

Get started:

■​ Install Kit CLI: https://github.com/jozu-ai/kitops

■​ Review example Kitfiles in the repository

■​ Join the KitOps community on Discord for technical

support

■​ Learn more about Jozu: jozu.com

■​ Schedule a Jozu POV: https://jozu.com/fast-and-secure/

■​ Get enterprise support for KitOps:

https://jozu.com/kitops-modelpack-support/

Technical Guide: End-to-End Kubernetes ML 43

https://github.com/jozu-ai/kitops
http://jozu.com
https://jozu.com/fast-and-secure/
https://jozu.com/kitops-modelpack-support/

	
	Index
	Executive Summary
	

	Introduction
	

	What is a ModelKit?
	Why OCI Artifacts?
	ModelKit Structure

	Development Workflow
	Creating Your First ModelKit
	Why Not Just Use Experiment Trackers?
	Local Development and Testing
	

	Updating and Versioning
	Handling Large Datasets
	Development Patterns
	Best Practices

	Securing the Project
	Registry Integration and Authentication
	Automated Security Scanning
	Attack Vector Coverage
	Policy-Driven Scanning Tiers
	Attack Vector Completeness and Limitations
	Security Attestations
	Policy Enforcement and Governance

	Production Deployment on Kubernetes
	Basic Deployment Pattern
	Immutable Deployments
	Integration with Model Serving Platforms
	Performance and Automation
	Tracking Across Environments
	CI/CD Integration
	GitHub Actions Example

	Advanced Deployment Patterns
	Canary Deployments with Automated Rollback
	Multi-Model Ensemble Serving

	Team Collaboration and Governance
	Shared Project State
	Audit and Compliance

	Troubleshooting and Debugging
	Version Comparison
	

	
	Reproducing Issues Locally
	Rollback Procedures
	Production Monitoring and Drift Detection

	Conclusion:
	Next Steps

