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Executive Summary 

Most enterprises deploy AI/ML using makeshift 

combinations of git repositories, object storage, and manual 

scripts. When models fail in production, teams waste hours 

determining which code version, data file, and configuration 

were actually deployed together. KitOps ModelKits solve this 

by packaging complete AI/ML projects (models, code, data, 

configs, dependencies) as single, versioned OCI artifacts 

that work with existing container registries, Kubernetes 

clusters, and CI/CD pipelines. One immutable reference 

replaces coordinating multiple systems to track project state. 

This guide shows platform engineers and ML practitioners 

how to package projects as ModelKits, deploy them on 

Kubernetes, and integrate them into production workflows. A 

European logistics company managing hundreds of models 

eliminated multi-day debugging sessions by switching from 

custom scripts to ModelKits. A US research laboratory chose 

self-hosted ModelKit registries for air-gapped CI/CD with 

sensitive data. The pattern: teams reduce operational 

overhead and improve deployment reliability and security by 

treating AI/ML projects as versioned units rather than loosely 

coordinated files, using infrastructure and practices they 

already have. 
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Introduction 

Moving AI/ML projects from development to production 

remains one of the hardest problems in enterprise 

technology. Data scientists build models that work perfectly 

on their laptops, but platform engineers struggle to deploy 

them reliably. Teams waste weeks debugging why a model 

that worked in staging fails in production. 

The core problem isn't the model itself - it's everything 

around it. Models don't run in isolation. They need specific 

versions of code, particular datasets (or references to them), 

exact configurations, and compatible dependencies. Change 

any piece and behavior changes. Most teams handle this with 

a combination of git repositories, model and feature stores, 

container registries, and manual deployment scripts. 

Throughout this guide, we use "AI/ML project" to refer to the 

complete set of versioned artifacts required to reproduce a 

working system: the model weights, training and inference 

code, datasets (or references to them), configuration files, 

prompts, dependencies, and environment specifications. This 

matters because deploying AI/ML successfully means 

deploying all of these components together, not just a model 

file. 

When we refer specifically to "models," we're talking about 

the trained weights and architecture - the narrow technical 

artifact that gets loaded into memory for inference or 

training. 
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This guide shows you how to use KitOps and ModelKits to 

package, version, and deploy complete AI/ML projects on 

Kubernetes. You'll learn how to move from experimental 

workflows to production-grade deployment practices using 

tools your platform team already understands. 
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What is a ModelKit? 

A ModelKit is a packaged AI/ML project stored as an OCI 

(Open Container Initiative) artifact - the same standard used 

for container images. It contains everything needed to 

reproduce your project's state at any point: model files, code, 

datasets, configuration, and dependency specifications. 

A note on terminology: ​
Most ML tooling talks about "models" because that's what 

data scientists focus on during development. But 

operationalizing AI/ML means dealing with everything that 

surrounds the model - code, data, configs, dependencies. We 

use "AI/ML project" throughout this guide because getting 

value from AI requires not only the model, but the agents, 

workflows, and services around it that drive the customer 

outcome. The whole project, then, is what needs to move 

from development to production. ModelKits are unique in 

versioning and packaging the entire project, not just the 

model weights or dataset. 

Think of a ModelKit as a deployment unit. Instead of tracking 

"which model version, which code commit, which config file" 

separately, you track one immutable reference. Your laptop, 

your colleague's laptop, staging, and production can all pull 

the exact same project state. 

 

​
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Why OCI Artifacts? 

OCI is the standard for distributing container images: every 

container registry supports them; your security systems 

already scan them; your CI/CD pipelines already move them. 

Using OCI for AI/ML projects means you leverage existing 

infrastructure instead of building parallel and disjointed 

systems. 

ModelKits package AI/ML projects just like container images 

package applications. Both use the same distribution 

mechanism, which means: 

 

■​ Standard (and always consistent) registry authentication 

and access controls 

■​ Built-in content addressing guarantees integrity 

■​ The registry’s content addressable storage automatically 

deduplicates assets saving storage and egress costs 

■​ Native support comes for free with Kubernetes and other 

orchestration platforms​
 

Best of all, ModelKits can be used with any container registry 

whether cloud hosted, private, on-premises, or open source. 

For organizations requiring enhanced security and 

compliance capabilities, Jozu Hub provides an on-premises 

registry specifically designed for AI/ML workloads.  
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Unlike generic container registries, Jozu Hub adds 

automated security scanning for model-specific 

vulnerabilities, compliance reporting for regulated industries, 

and deployment controls that prevent tampered or 

unapproved models from reaching production. Teams use the 

same Kit CLI and workflows while gaining enterprise-grade 

security features. 
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ModelKit Structure 

A ModelKit contains: 

Model files: Weights, architectures, and model-specific 

artifacts in standard formats (ONNX, PyTorch, TensorFlow, 

etc.) 

Code: Training scripts, inference handlers, preprocessing 

logic, and any custom code needed to use the model 

Datasets: Training data, validation sets, or references to data 

locations with versioning information 

Configuration: Hyperparameters, environment settings, 

feature definitions, and deployment specifications 

Dependencies: Language runtimes, libraries, and system 

packages with exact versions 

Documentation & Prompts: System and base prompts, 

README, installation and testing guides, or anything else 

Metadata: Ownership and lineage information, training 

metrics, model cards, and documentation 

 

Each component is versioned together. When you reference 

ModelKit version 1.2.3, you get all of these pieces in their 

exact state from that version. 

Not all ModelKits need to contain all components - it’s 

common to “layer” ModelKits. For example, in a fine-tuned 

RAG context that project’s ModelKit may reference a 

canonical dataset ModelKit and a foundational model’s 

ModelKit. 
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Development Workflow 

Creating Your First ModelKit 

Start with a trained model and its associated project files. 

The Kit CLI packages everything into a ModelKit. 

Install the Kit CLI: 

 

Create a Kitfile describing your project: 
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Pack and push the ModelKit: 

 

Your complete project is now in your registry as an 

immutable, versioned artifact. 

Why Not Just Use Experiment Trackers? 

Experiment tracking tools (MLflow, Weights & Biases, 

Neptune) excel at comparing model performance during 

development. They version model weights and log 

hyperparameters effectively. But they weren't designed to 

version the complete project required for production 

deployment. 

The gap shows up when you promote a model to production. 

Your experiment tracker tells you which model performed 

best. It doesn't tell you which version of the preprocessing 

code to deploy with it, which configuration file controlled 

feature engineering, or which dataset version influenced 

model behavior. Teams bridge this gap manually - tracking 

code versions in git, config versions in separate systems, and 

hoping everything aligns correctly in production. 
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ModelKits package the complete project state that 

experiment trackers don't capture. You still use MLflow or 

W&B for comparing experiments, but add ModelKits when 

you need to deploy, version, and reproduce the entire project 

- not just the model weights. 

Local Development and Testing 

You interact with ModelKits like a container - by pushing and 

pulling from a registry.  

To pull a ModelKit from the registry onto your local file 

system: 

 

Then unpack only the model to the local fraud-project 

directory: 

 

The unpack operation recreates the exact project structure 

from the ModelKit. Every file, every dependency version, 

every configuration setting matches what was packed. 

Optionally, you can extract only those parts of the ModelKit 

you need using filters. 
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This solves the "works on my machine" problem. When a 

colleague pulls the same ModelKit, they get identical project 

state. When you deploy to staging or production, those 

environments get the same state. No drift, no surprises. 

One government SI managing hundreds of models across 

their supply chain optimization platform switched from 

scattered packaging repositories to ModelKits. Their biggest 

win wasn't faster deployments - it was eliminating the "which 

version of which data file went with which model" debugging 

sessions that previously consumed hours or days of 

engineering time. 

Updating and Versioning 

When you update your project, create a new ModelKit 

version: 

 

The previous version (1.0.0) remains available. You can run 

both in production, roll back instantly, or compare behavior 

across versions. Because ModelKits are immutable, version 

1.0.0 will always contain exactly what it contained when you 

first pushed it. 
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Handling Large Datasets 

OCI registries handle multi-gigabyte artifacts efficiently - 

they're designed for container layers that can reach tens of 

gigabytes. ModelKits leverage the same content-addressable 

storage and layer deduplication that makes container 

distribution fast and inexpensive. 

For datasets under 50GB, include them directly in the 

ModelKit. The registry's deduplication means you only store 

each unique chunk once. If 90% of your training data stays 

constant between versions, you only pay storage costs for the 

10% that changed. 

For datasets over 50GB or datasets that change frequently, 

use references instead of embedding. 

The ModelKit stores the reference, version, and content hash. 

Your deployment pulls data from the source (S3, data lake, 

feature store) but the ModelKit still captures which exact 

dataset version the model expects. This gives you versioning 

without storage duplication. 

Production deployments commonly use dataset references. 

Development and testing environments often embed smaller 

validation datasets directly for reproducibility. 

Jozu Hub tracks both embedded datasets and dataset 

references, maintaining lineage even when data lives in 

external systems. When a ModelKit references an S3 bucket 

or feature store, Jozu Hub logs the reference details, version 

hash, and access timestamp. During audits, you can prove 

which exact data version trained each model without storing 

duplicate copies. 
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Development Patterns 

Teams use three main patterns with ModelKits, each suited 

to different workflows and compliance requirements: 

Automatic Packaging Post-Training: ​
Create a new ModelKit automatically when training runs 

complete successfully. The SDK packages resulting assets 

and pushes them to the registry without manual intervention. 

This pattern works for teams wanting immediate packaging 

or needing all runs packaged for compliance reasons. 

Selective Packaging of Champion Models:​
Package only models meeting performance thresholds. The 

SDK can query experiment tracking tools for runs matching 

specific criteria - accuracy above threshold, loss below target 

- then package only qualifying models. This keeps production 

registries focused on production-ready candidates. 

Milestone-Based Packaging:​
Most teams create ModelKits at key milestones: when 

validation passes, metrics meet thresholds, or models are 

ready for promotion to staging. This balances governance 

benefits with development velocity. During active 

experimentation, artifacts remain in existing tools (MLflow, 

feature stores, S3). When ready for promotion, package 

everything into a ModelKit for reliable handoff to downstream 

teams. 

For regulated industries, automatic packaging of all runs 

provides complete auditability. For non-regulated industries, 

milestone-based packaging minimizes workflow disruption 

while enabling reliable production deployments. 
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Best Practices 

■​ Version everything together from the start - retroactive 

versioning is painful 

■​ Use semantic versioning for ModelKits to signal breaking 

changes 

■​ Tag ModelKits with meaningful metadata for searchability 

■​ Automate ModelKit creation in CI pipelines rather than 

manual packing 

■​ Test unpacked ModelKits in staging before production 

deployment 

The goal isn't to replace your existing ML infrastructure - it's 

to give you a better way to package and distribute AI/ML 

projects through infrastructure you already have. Container 

registries, Kubernetes, CI/CD pipelines - ModelKits work with 

the tools your platform team already maintains. 
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Securing the Project 

Registry Integration and Authentication 

Jozu Hub extends your existing OCI registry with enterprise 

governance capabilities. Most organizations attach Jozu Hub 

to their current registry infrastructure—Amazon ECR, JFrog 

Artifactory, or similar—rather than deploying a separate 

system. This keeps authentication and authorization 

unchanged. ModelKits use the same RBAC policies, identity 

management, and access controls already governing 

container images. 

Teams typically separate projects through registry 

namespaces. The fraud-detection team maintains their 

ModelKits independently from customer-segmentation, yet 

both inherit the same security scanning, policy enforcement, 

and audit logging. This structure provides autonomy within 

governance boundaries without fragmenting infrastructure. 

Automated Security Scanning 

Every ModelKit pushed to Jozu Hub triggers multi-layered 

security analysis targeting AI/ML-specific attack vectors for 

generative AI and machine learning models. This addresses 
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the unique security challenges that emerge when models 

become production systems - threats that traditional 

vulnerability scanning misses entirely. 

The scanning framework employs five specialized scanners 

operating in concert. Each addresses specific attack vectors 

while maintaining complete on-premises deployment 

capability - critical for organizations with strict data 

sovereignty requirements. All tools run self-hosted with no 

dependency on external APIs or cloud services, ensuring 

compliance with regulatory requirements while keeping 

ModelKit data entirely within organizational infrastructure. 

Attack Vector Coverage 

Supply Chain Protection: ​
Serialized model files in pickle, joblib, HDF5, ONNX, and 

TensorFlow SavedModel formats can execute arbitrary code 

during loading. Static analysis examines these files for 

malicious deserialization payloads and embedded code 

before they reach runtime environments. This prevents 

compromised models from entering your pipeline disguised 

as legitimate artifacts. Behavioral validation provides 

secondary verification by testing whether models exhibit 

suspicious runtime behavior patterns. 

Content Safety Validation: ​
Models and their associated data undergo safety checks 

across multiple dimensions. Prompt templates get scanned 

for injection patterns that could override system instructions.  
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Training data gets analyzed for PII exposure, toxic content, 

and embedded secrets. Configuration files get checked for 

exposed credentials. Code artifacts get examined for 

malicious patterns. This multi-layer scanning ensures 

ModelKits don't inadvertently contain sensitive information 

or harmful content that could compromise production 

systems or violate data protection regulations. 

Behavioral Red-Teaming: ​
Automated probes test how models respond to adversarial 

inputs through systematic attack simulation. Prompt 

injection testing attempts to override system instructions 

with malicious prompts. Policy evasion probes try to trick 

models into violating guidelines. Data exfiltration testing 

checks whether attackers can extract training data through 

carefully crafted queries. System prompt leakage detection 

verifies whether users can discover internal instructions. 

Each probe generates risk scores that inform deployment 

decisions—models failing critical probes get blocked from 

production automatically. 

Adversarial Robustness Testing: ​
Sophisticated attacks attempt to fool models through 

carefully crafted inputs. Evasion attack testing evaluates 

whether adversarial examples can cause misclassification. 

Poisoning vulnerability detection analyzes training data for 

evidence of manipulation. Model extraction resistance 

testing measures whether attackers can steal model logic 

through repeated querying. Membership inference testing 

determines if attackers can discover whether specific data 

was in the training set. This deep analysis is critical for 

models making security decisions, processing financial 

transactions, or handling untrusted user input. 
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Privacy Protection: ​
Models can leak sensitive information through multiple 

channels. PII scanning examines training data, prompts, and 

configuration files for exposed personal information—names, 

addresses, financial data, health records—that shouldn't be in 

production systems. Membership inference testing 

determines whether attackers can discover if specific 

individuals' data was included in training sets, a critical 

concern under GDPR and similar privacy regulations. Data 

leakage detection identifies whether models inadvertently 

memorize and reproduce training data when queried with 

specific prompts. This dual-layer approach catches privacy 

risks before they become compliance violations or security 

incidents. 

Model Integrity: ​
Compromised models pose existential risks to AI systems. 

Backdoor detection searches for hidden triggers embedded 

in model weights that could activate malicious behavior when 

specific inputs appear. These backdoors can survive training 

and remain dormant until exploited. Poisoning vulnerability 

analysis examines training data for evidence of 

manipulation—mislabeled examples, adversarial samples, or 

biased data injected to corrupt model behavior. Statistical 

analysis detects anomalies indicating poisoning attempts. 

While detection is moderate (sophisticated backdoors and 

poisoning can evade analysis), the scanning provides 

baseline protection against known attack patterns and 

obvious manipulation attempts. 
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Regression Prevention: ​
Reproducible test suites measure jailbreak resistance and 

prompt robustness across model iterations. This ensures 

models maintain consistent security posture as they evolve 

and that updates don't introduce new vulnerabilities. Tests 

run automatically on every ModelKit push, catching 

degradation before it reaches production. 

Policy-Driven Scanning Tiers 

Not every ModelKit requires identical scrutiny. The policy 

engine routes ModelKits to appropriate scanning tiers based 

on configurable YAML policies that evaluate model 

characteristics and deployment context. 

Essential Tier provides rapid baseline security for 

experimental models during active development. ​
Supply chain attack checks verify model file integrity. 

Optional content safety scanning adds basic validation for 

PII and secrets. This tier completes within 5 minutes, 

enabling fast iteration without sacrificing fundamental 

security. It targets models that won't leave development 

environments but still need protection against obvious 

threats. 

Standard Tier balances thoroughness with efficiency for 

staging deployments and integration testing. ​
Required checks include supply chain protection and 

comprehensive content safety validation. Optional 

assessments add behavioral red-teaming and adversarial 

testing based on model type and risk profile.  
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This 15-minute scan provides solid coverage for most 

production candidates. It's the default tier for models moving 

from development to QA or staging environments where 

they'll face more realistic testing conditions. 

Comprehensive Tier applies maximum scrutiny to 

critical production models serving real users or handling 

sensitive data. ​
All security checks execute with extensive test suites. 

Adversarial robustness testing runs with GPU acceleration to 

handle computationally intensive attack simulations within 

acceptable timeframes. While requiring up to 60 minutes, 

this tier ensures models meet the highest security standards 

for regulated deployments. It's mandatory for models in 

healthcare, financial services, or other domains where model 

failures carry serious consequences—both technical and 

regulatory. 

The policy engine selects tiers by evaluating multiple factors: 

model size (larger models receive more thorough scanning), 

deployment target (production tags trigger comprehensive 

assessment), model type (LLMs and multimodal models 

require specialized testing), and custom organizational 

policies. For example, a policy might route all LLMs to 

Comprehensive Tier regardless of size, or require Standard 

Tier for any model tagged for customer-facing deployment. 

Teams configure these rules through YAML policies that 

adjust as requirements evolve, enabling governance without 

blocking development velocity. 
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Attack Vector Completeness and Limitations 

This multi-dimensional scanning approach provides strong to 

excellent coverage across most AI/ML security threats. 

However, upload-time scanning has inherent limitations that 

highlight the importance of defense in depth. Stateful attacks 

involving multi-turn conversations or memory manipulation 

cannot be fully tested without deployment context. These 

require runtime monitoring to detect. Integration attacks 

targeting plugin interactions or API abuse need actual 

integrations to manifest. Performance attacks attempting 

denial-of-service through resource exhaustion require actual 

infrastructure to measure impact. Behavioral drift (models 

changing behavior over time) only emerges during operation. 

These limitations don't diminish the framework's value, they 

define its role in a broader security strategy. Upload-time 

scanning shifts security testing earlier in the cycle and 

prevents known vulnerabilities from reaching production. 

Runtime monitoring catches behavioral issues that only 

emerge during operation. Together, they provide 

comprehensive protection across the model lifecycle. 

Security Attestations 

Every scan generates cryptographically signed attestations 

documenting results in a standardized JSON format.  
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These attestations become immutable records attached to 

ModelKits using Cosign, providing auditable evidence of 

security assessments that can't be tampered with or forged. 

The attestation captures comprehensive details: tool 

identification with versions, ModelKit reference with 

SHA-256 digest, metric definitions with pass/fail thresholds, 

individual findings with severity levels (info, anomaly, 

concern, error), and execution metadata including timing and 

configuration. Each security check contributes one evaluation 

run to a unified document, creating a complete security 

picture for the ModelKit. 

These attestations serve multiple purposes throughout the 

deployment lifecycle. Deployment systems check attestations 

before allowing production releases—no attestation or failed 

checks mean no deployment, enforced at the infrastructure 

level. Compliance audits use them as evidence of security 

diligence, demonstrating that models underwent thorough 

testing before serving users. Incident investigations 

reference them to understand model vulnerabilities and trace 

security decisions back to specific findings. The 

cryptographic signatures ensure attestations haven't been 

tampered with, maintaining chain of custody from scanning 

through deployment and into audit review. 

The framework evolves continuously as new attack vectors 

emerge. The modular architecture enables adding new 

security checks without disrupting existing workflows. 

Scanner capabilities update automatically to detect the 

latest attack patterns. Policies adjust to reflect changing 

organizational requirements. The result: security that 

improves over time while maintaining the same 

interface—push a ModelKit, receive comprehensive security 

assessment. 

Technical Guide: End-to-End Kubernetes ML    24 



 

Policy Enforcement and Governance 

Approval workflows transform deployment from uncontrolled 

progression to governed transition. A data scientist pushes a 

model—it enters quarantine. Security scanning passes—it 

awaits business approval. Manager approves—it becomes 

eligible for staging. Each gate is enforced at the registry level 

through policy evaluation. 

Environment restrictions prevent models from jumping 

stages. Development models cannot deploy to production. 

Healthcare models require HIPAA attestations. Financial 

models need SOX compliance checks. Jozu Hub blocks 

non-compliant deployments automatically. 

Compliance attestations attach to ModelKits as 

cryptographically signed statements verifiable by auditors. 

"This model was trained on anonymized data." "This model 

passed fairness testing." "This model complies with GDPR." 

These aren't code comments—they're signed claims with 

chain of custody. 
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Production Deployment on 
Kubernetes 

Basic Deployment Pattern 

You can deploy a ModelKit to Kubernetes using standard 

patterns. Here's a deployment for a model serving endpoint: 
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The init container unpacks the ModelKit before the inference 

server starts. The inference server loads the model, code, 

and configuration from the unpacked location. Everything 

needed to run the model is present and versioned together. 

More importantly, everything can be tied back to the 

ModelKit and even to the experiment run or notebook that 

the ModelKit was built from! 

Immutable Deployments 

Traditional model deployment often looks like this: update a 

model file in object storage, restart pods, hope the code still 

matches. With ModelKits, you reference a specific version in 

your deployment spec. That version never changes. 

To update the ModelKit reference and apply the new 

deployment: 

 

Kubernetes handles the rollout. If something breaks, roll back 

by reverting the deployment to reference the previous 

ModelKit version. No hunting through logs to figure out which 

S3 bucket had which model file. 
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Integration with Model Serving Platforms 

KServe's storage initializer architecture enables direct 

ModelKit integration without custom serving code. A 

ModelKit-specific storage initializer handles the kit:// 

protocol, pulling ModelKits from your registry, verifying their 

SHA-256 digests, and unpacking artifacts into serving 

containers. This maintains the security chain through to 

inference - the same immutable artifacts that passed 

security scanning are exactly what serves predictions. 

 

Authentication leverages Kubernetes-native patterns. Service 

accounts control which clusters can access which ModelKits. 

Development clusters cannot pull production models. 

Production clusters cannot access experimental models. This 

enforces environment boundaries at the infrastructure level. 
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The ModelKit URI (kit://myregistry.com/fraud-detection:1.0.0) 

replaces traditional S3 URIs pointing to mutable buckets. 

This single change transforms deployments from hopeful to 

deterministic. The ModelKit structure ensures the URI points 

to model weights, preprocessing code, configuration, and 

documentation as a complete package. 

Performance and Automation 

ModelKit manifests (Kitfiles) can include resource 

requirements from training, enabling KServe to allocate 

appropriate CPU, memory, and GPU resources without 

manual specification. 

Performance optimization through caching reduces registry 

load and deployment time. KServe's persistent volume 

caching stores unpacked ModelKits locally. Subsequent 

deployments check cache validity against SHA-256 digests 

from your registry. Changed models trigger fresh pulls. 

Unchanged models serve from cache. This balances security 

verification with operational efficiency - every deployment 

confirms artifact integrity without repeatedly downloading 

gigabytes of unchanged model weights. 
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Tracking Across Environments 

Experiment tracking tools like MLflow or Weights & Biases 

version models well. They're less helpful for versioning the 

code that loads those models, the data that trained them, or 

the configuration that controls behavior. When you promote a 

model from staging to production, you're not just moving 

model weights - you're moving an entire project. 

ModelKits make this explicit. Your staging environment tests 

ModelKit version x.y.z. If tests pass, production deploys the 

same version x.y.z. Not a new model file with "hopefully the 

same code" - the exact same immutable project package. 

Several research laboratories working with sensitive data 

chose self-hosted ModelKit registries specifically because 

their CI/CD runs in air-gapped environments. They needed to 

version and distribute complete AI projects without external 

dependencies or cloud services. The OCI standard made this 

straightforward with existing container registry infrastructure. 

CI/CD Integration 

Automated pipelines benefit most from project-level 

versioning. When your training pipeline produces a new 

model, you want to test the entire project - not just the model 

weights. 
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GitHub Actions Example 

 

This pipeline trains a model, packages the complete project 

into a ModelKit, and deploys it to staging. Adding the 

specific SHA to the ModelKit reference (modelkit.SHA) ties 

the deployment to a specific ModelKit version, giving you 

complete traceability. 

ModelKits can be used with any pipeline that can consume 

containers or OCI Artifacts. 
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Advanced Deployment Patterns 

A/B testing through traffic splitting requires unambiguous 

model identification. Tag-based promotion enables clear 

experiment definition using KServe's traffic management: 

 

The fraud-detection:champion ModelKit receives 80% of 

traffic while fraud-detection:challenger receives 20%. 

Metrics collection happens at the ModelKit level, enabling 

direct comparison between versions. When the challenger 

outperforms the champion, promotion means retagging - the 

same immutable artifact that served 20% of traffic now 

serves 100%. 

Canary Deployments with Automated Rollback 

Canary deployments reduce risk for critical models through 

gradual rollout with automated rollback. New versions receive 
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minimal traffic initially - 1% or less - with automatic rollback 

triggers if error rates spike or latencies degrade. ModelKit 

immutability guarantees rollback returns to an exact previous 

state, not a reconstructed approximation. 

KServe monitors metrics, compares against thresholds 

defined in deployment policies, and reverts to the previous 

ModelKit version if the canary fails validation. Because 

ModelKits are immutable, these rollbacks complete in 

seconds rather than minutes or hours. 

Multi-Model Ensemble Serving 

Complex AI systems often combine multiple models for 

ensemble predictions. A fraud detection system might 

combine transaction analysis, user behavior modeling, and 

network graph analysis. Each model exists as a separate 

ModelKit, versioned independently but deployed together: 
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Metadata or tagging ensures compatible versions deploy as 

a unit - transaction-analyzer:v3 only deploys with 

behavior-model:v7, preventing version mismatches that 

could degrade ensemble performance. Each component 

ModelKit maintains its own security scanning results and 

audit trail while functioning as part of a larger system. 
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Team Collaboration and 
Governance 

Shared Project State 

Making an AI project successful takes a village: data 

scientists create ModelKits during development, ML 

engineers test them in staging, platform engineers deploy 

them in production, DevOps teams manage the registry, and 

Security teams scan the artifacts. Everyone references the 

same versioned project. 

When someone asks "what's running in production," the 

answer is an immutable ModelKit reference: 

myregistry.com/fraud-detection:1.0.0. That reference tells you 

everything: which model, which code, which data, which 

configuration. Stop using spreadsheets to track deployment 

versions and Slack messages asking "did we deploy the 

model trained on the new data or the old data?" 
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Audit and Compliance 

Regulated industries need to answer questions like: "What 

model version processed this transaction? What data trained 

that model? Who approved the deployment?" 

ModelKits provide project-level lineage. The Kitfile metadata 

includes training information, model metrics, and authorship. 

Registry access logs show who pushed and pulled which 

versions, while Kubernetes labels tie running pods to specific 

ModelKit versions. 

When auditors ask for evidence, you can point to immutable 

artifacts with complete provenance and lineage rather than 

trying to reconstruct history from scattered logs and git 

commits. 
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Troubleshooting and Debugging 

Version Comparison 

When a newly deployed model behaves differently than 

expected, you don’t need to hunt through multiple logs, just 

compare ModelKit versions: 

 

The kit diff command shows what changed between 

versions in the terminal. 

Jozu Hub provides a UI for visual comparison with 

line-by-line diffs of changes: updated model files, modified 

preprocessing code, different hyperparameters, dataset 

changes, or prompt rewrites. Security scans run automatically 

on each version, surfacing new vulnerabilities immediately. 

You're not guessing what changed - you're examining the 

immutable record of project state with full security context.  
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Reproducing Issues Locally 

To pull the exact ModelKit version running in production: 

 

Now you have the production project state on your laptop. 

Run the inference code with the production model and 

configuration. Feed it the problematic input. Debug with full 

context instead of trying to reproduce production conditions 

from memory. 

Rollback Procedures 

Rolling back to the previous ModelKit version can be done 

through your serving platform: 

 

Kubernetes performs a standard rolling update back to the 

working version. Because ModelKits are immutable, you know 

exactly what you're rolling back to. 
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Production Monitoring and Drift Detection 

Prometheus metrics collection extends beyond standard 

HTTP metrics to capture model-specific behavior. Prediction 

latency distributions, confidence score patterns, feature value 

ranges, and inference throughput all link back to ModelKit 

versions, enabling version-specific analysis: 

 

When metrics degrade after deploying 

fraud-detection:SHA, teams can use the SHA to compare 

the in-production ModelKit and diff against previous known 

good deployments. Or, using the SHA and ModelKit trace 

back to the experiment run that generated the model and 

check runtime metrics against tested metrics to isolate the 

regression. 

Drift detection requires baseline comparisons that ModelKits 

provide naturally. The validation datasets included in 

ModelKits during development establish performance 

baselines - expected accuracy, precision, recall, and 

confidence distributions. Production predictions get 

compared against these baselines through statistical tests 

that identify significant deviations. 

 

When drift exceeds configurable thresholds, automated 

retraining pipelines trigger, creating feedback loops back to 

development workflows. Automatic rollback triggers prevent 
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prolonged outages when models degrade in production. 

When error rates spike, latencies increase beyond SLAs, or 

drift accelerates past emergency thresholds, KServe can 

automatically revert to previous ModelKit versions. 

This closes the loop from development through security to 

production operations. Models packaged as ModelKits, 

secured through scanning, promoted through pipelines, now 

serve predictions with full observability and automated 

recovery. The atomic unit established at the beginning - the 

ModelKit - maintains its integrity and traceability through 

every stage of the lifecycle. 

 

​
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Conclusion:  

Moving AI/ML projects from development to production 

requires more than deploying model weights. Teams must 

coordinate models, code, datasets, configurations, and 

dependencies across environments while maintaining 

security, auditability, and reproducibility. The traditional 

approach of managing these components separately creates 

operational overhead, increases debugging time, and 

introduces deployment risk. 

ModelKits solve this by treating the complete AI/ML project 

as a single, versioned unit. By packaging everything needed 

to reproduce a working system into an OCI artifact, teams 

leverage existing container infrastructure instead of building 

parallel systems. The same registries that store container 

images now store complete AI/ML projects. The same CI/CD 

pipelines that deploy applications now deploy models. The 

same security scanning that protects code now protects AI 

workloads. 

This matters because it reduces the risk of production issues 

and shortens time-to-recovery for when outages do happen. 

The fact that it typically speeds time-to-production is a 

bonus. 

The operational benefits compound over time. Debugging 

sessions that once took days now take hours because you 

can compare exact project states across versions. Audit 

preparation that once took weeks now takes days because 

you have complete provenance for every deployed model. 
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Deployment failures that once required hunting through 

multiple systems now point to a single ModelKit reference. 

For organizations requiring enhanced security and 

compliance, Jozu Hub extends the ModelKit pattern with 

automated vulnerability scanning, compliance reporting, and 

deployment controls specifically designed for AI/ML 

workloads in regulated industries. From five-layer security 

scanning that catches AI-specific vulnerabilities to KServe 

integration with automated drift detection, ModelKits 

transform every stage of the ML lifecycle from fragile 

coordination into reliable operations. 
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Next Steps 

Start with a single AI/ML project. Package it as a ModelKit. 

Deploy it to a test Kubernetes cluster. Experience the 

difference between managing versioned project state versus 

manually coordinating model files, code, and configuration. 

 

Get started:  

■​ Install Kit CLI: https://github.com/jozu-ai/kitops 

■​ Review example Kitfiles in the repository 

■​ Join the KitOps community on Discord for technical 

support 

■​ Learn more about Jozu: jozu.com 

■​ Schedule a Jozu POV: https://jozu.com/fast-and-secure/ 

■​ Get enterprise support for KitOps: 

https://jozu.com/kitops-modelpack-support/ 
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