EEEEEEEEEEEEEE

End -to- End
Kubernetes-ML



Index

Executive Summary

Introduction

What is a ModelKit?

Development Workflow

Securing the Project

Production Deployment on Kubernetes
Team Collaboration and Governance
Troubleshooting and Debugging
Conclusion

Next Steps

10

17

26

35

37

41

43

Technical Guide: End-to-End Kubernetes ML 2



Executive Summary

Most enterprises deploy AI/ML using makeshift
combinations of git repositories, object storage, and manual
scripts. When models fail in production, teams waste hours
determining which code version, data file, and configuration
were actually deployed together. KitOps ModelKits solve this
by packaging complete AI/ML projects (models, code, data,
configs, dependencies) as single, versioned OCI artifacts
that work with existing container registries, Kubernetes
clusters, and CI/CD pipelines. One immutable reference

replaces coordinating multiple systems to track project state.

This guide shows platform engineers and ML practitioners
how to package projects as ModelKits, deploy them on
Kubernetes, and integrate them into production workflows. A
European logistics company managing hundreds of models
eliminated multi-day debugging sessions by switching from
custom scripts to ModelKits. A US research laboratory chose
self-hosted ModelKit registries for air-gapped CI/CD with
sensitive data. The pattern: teams reduce operational
overhead and improve deployment reliability and security by
treating AI/ML projects as versioned units rather than loosely
coordinated files, using infrastructure and practices they

already have.



Introduction

Moving AI/ML projects from development to production
remains one of the hardest problems in enterprise
technology. Data scientists build models that work perfectly
on their laptops, but platform engineers struggle to deploy
them reliably. Teams waste weeks debugging why a model

that worked in staging fails in production.

The core problem isn't the model itself - it's everything
around it. Models don't run in isolation. They need specific
versions of code, particular datasets (or references to them),
exact configurations, and compatible dependencies. Change
any piece and behavior changes. Most teams handle this with
a combination of git repositories, model and feature stores,

container registries, and manual deployment scripts.

Throughout this guide, we use "AI/ML project” to refer to the
complete set of versioned artifacts required to reproduce a
working system: the model weights, training and inference
code, datasets (or references to them), configuration files,
prompts, dependencies, and environment specifications. This
matters because deploying AI/ML successfully means
deploying all of these components together, not just a model

file.

When we refer specifically to "models," we're talking about
the trained weights and architecture - the narrow technical
artifact that gets loaded into memory for inference or

training.

Technical Guide: End-to-End Kubernetes ML 4



This guide shows you how to use KitOps and ModelKits to
package, version, and deploy complete AI/ML projects on
Kubernetes. You'll learn how to move from experimental
workflows to production-grade deployment practices using
tools your platform team already understands.

Technical Guide: End-to-End Kubernetes ML 5



What is a ModelKit?

AITOPS

A ModelKit is a packaged AI/ML project stored as an OCI
(Open Container Initiative) artifact - the same standard used
for container images. It contains everything needed to
reproduce your project's state at any point: model files, code,
datasets, configuration, and dependency specifications.

A note on terminology:

Most ML tooling talks about "models" because that's what
data scientists focus on during development. But
operationalizing AI/ML means dealing with everything that
surrounds the model - code, data, configs, dependencies. We
use "AI/ML project" throughout this guide because getting
value from Al requires not only the model, but the agents,
workflows, and services around it that drive the customer
outcome. The whole project, then, is what needs to move
from development to production. ModelKits are unique in
versioning and packaging the entire project, not just the

model weights or dataset.

Think of a ModelKit as a deployment unit. Instead of tracking
"which model version, which code commit, which config file"
separately, you track one immutable reference. Your laptop,
your colleague's laptop, staging, and production can all pull

the exact same project state.

Technical Guide: End-to-End Kubernetes ML 6



Why OCI Artifacts?

OCI is the standard for distributing container images: every
container registry supports them; your security systems
already scan them; your CI/CD pipelines already move them.
Using OCI for AI/ML projects means you leverage existing
infrastructure instead of building parallel and disjointed

systems.

ModelKits package AI/ML projects just like container images
package applications. Both use the same distribution

mechanism, which means:

m Standard (and always consistent) registry authentication
and access controls

m Built-in content addressing guarantees integrity

m The registry’s content addressable storage automatically
deduplicates assets saving storage and egress costs

m Native support comes for free with Kubernetes and other

orchestration platforms

Best of all, ModelKits can be used with any container registry

whether cloud hosted, private, on-premises, or open source.

For organizations requiring enhanced security and
compliance capabilities, Jozu Hub provides an on-premises
registry specifically designed for AI/ML workloads.

Technical Guide: End-to-End Kubernetes ML 7



Unlike generic container registries, Jozu Hub adds
automated security scanning for model-specific
vulnerabilities, compliance reporting for regulated industries,
and deployment controls that prevent tampered or
unapproved models from reaching production. Teams use the
same Kit CLI and workflows while gaining enterprise-grade

security features.

Technical Guide: End-to-End Kubernetes ML 8



ModelKit Structure

ModelKit

“
NodelKit Manif

Model

Serialized Model Model Parameters

Datasets

A ModelKit contains:

Model files: Weights, architectures, and model-specific
artifacts in standard formats (ONNX, PyTorch, TensorFlow,

etc.)

Code: Training scripts, inference handlers, preprocessing

logic, and any custom code needed to use the model

Datasets: Training data, validation sets, or references to data

locations with versioning information

Configuration: Hyperparameters, environment settings,
feature definitions, and deployment specifications

Dependencies: Language runtimes, libraries, and system
packages with exact versions

Documentation & Prompts: System and base prompts,
README, installation and testing guides, or anything else

Metadata: Ownership and lineage information, training

metrics, model cards, and documentation

Each component is versioned together. When you reference
ModelKit version 1.2.3, you get all of these pieces in their

exact state from that version.

Not all ModelKits need to contain all components - it’s
common to “layer” ModelKits. For example, in a fine-tuned
RAG context that project’s ModelKit may reference a
canonical dataset ModelKit and a foundational model’s
ModelKit.

Technical Guide: End-to-End Kubernetes ML 9



Development Workflow

Creating Your First ModelKit

Start with a trained model and its associated project files.

The Kit CLI packages everything into a ModelKit.

Install the Kit CLI:

brew install jozu-ai/kitops/kit

Create a Kitfile describing your project:

manifestVersion: 1.0.0
package:
name: fraud-detection
version: 1.0.0
description: Transaction fraud detection model
authors: ["ML Team"]

model:
name: fraud-detector
path: ./models/fraud_model.onnx
framework: onnx
version: 1.0.0

code:
- path: ./src/inference.py
- path: ./src/preprocessing.py

datasets:
- name: training-data
path: ./data/training_set.parquet
- name: validation-data
path: ./data/validation_set.parquet

config:

- path: ./config/model_config.yaml
- path: ./config/feature_definitions.json

Technical Guide: End-to-End Kubernetes ML 10



Pack and push the ModelKit:

# Pack the ModelKit and store it in the local registry
kit pack . -t local-registry.com/fraud-detection:1.0.0

# Push the ModelKit from local to a remote registry for sharing
kit push local-registry.com/fraud-detection:1.0.0 remote-registry.com/fraud-detection:1.0.0

Your complete project is now in your registry as an
immutable, versioned artifact.

Why Not Just Use Experiment Trackers?

Experiment tracking tools (MLflow, Weights & Biases,
Neptune) excel at comparing model performance during
development. They version model weights and log
hyperparameters effectively. But they weren't designed to
version the complete project required for production

deployment.

The gap shows up when you promote a model to production.

Your experiment tracker tells you which model performed
best. It doesn't tell you which version of the preprocessing
code to deploy with it, which configuration file controlled
feature engineering, or which dataset version influenced

model behavior. Teams bridge this gap manually - tracking

code versions in git, config versions in separate systems, and

hoping everything aligns correctly in production.

Technical Guide: End-to-End Kubernetes ML

11



ModelKits package the complete project state that
experiment trackers don't capture. You still use MLflow or
W&B for comparing experiments, but add ModelKits when
you need to deploy, version, and reproduce the entire project

- not just the model weights.

Local Development and Testing

You interact with ModelKits like a container - by pushing and

pulling from a registry.

To pull a ModelKit from the registry onto your local file

system:

kit pull myregistry.com/fraud-detection:1.0.0

Then unpack only the model to the local fraud-project

directory:

kit unpack myregistry.com/fraud-detection:1.0.0 —f=model -d ./fraud-project

The unpack operation recreates the exact project structure
from the ModelKit. Every file, every dependency version,
every configuration setting matches what was packed.
Optionally, you can extract only those parts of the ModelKit

you need using filters.

kit unpack myregistry.com/fraud-detection:1.0.0 ./fraud-project

Technical Guide: End-to-End Kubernetes ML 12



This solves the "works on my machine" problem. When a
colleague pulls the same ModelKit, they get identical project
state. When you deploy to staging or production, those

environments get the same state. No drift, no surprises.

One government SI managing hundreds of models across
their supply chain optimization platform switched from
scattered packaging repositories to ModelKits. Their biggest
win wasn't faster deployments - it was eliminating the "which
version of which data file went with which model" debugging
sessions that previously consumed hours or days of

engineering time.

Updating and Versioning

When you update your project, create a new ModelKit
version:

# Make changes to code, retrain model, update configs

kit pack . -t myregistry.com/fraud-detection:1.1.0
kit push myregistry.com/fraud-detection:1.1.0

The previous version (1.0.0) remains available. You can run
both in production, roll back instantly, or compare behavior
across versions. Because ModelKits are immutable, version
1.0.0 will always contain exactly what it contained when you
first pushed it.

Technical Guide: End-to-End Kubernetes ML 13



Handling Large Datasets

OCI registries handle multi-gigabyte artifacts efficiently -
they're designed for container layers that can reach tens of
gigabytes. ModelKits leverage the same content-addressable
storage and layer deduplication that makes container
distribution fast and inexpensive.

For datasets under 50GB, include them directly in the
ModelKit. The registry's deduplication means you only store
each unique chunk once. If 90% of your training data stays
constant between versions, you only pay storage costs for the
10% that changed.

For datasets over 50GB or datasets that change frequently,

use references instead of embedding.

The ModelKit stores the reference, version, and content hash.
Your deployment pulls data from the source (S3, data lake,
feature store) but the ModelKit still captures which exact
dataset version the model expects. This gives you versioning

without storage duplication.

Production deployments commonly use dataset references.
Development and testing environments often embed smaller
validation datasets directly for reproducibility.

Jozu Hub tracks both embedded datasets and dataset
references, maintaining lineage even when data lives in
external systems. When a ModelKit references an S3 bucket
or feature store, Jozu Hub logs the reference details, version
hash, and access timestamp. During audits, you can prove
which exact data version trained each model without storing

duplicate copies.

Technical Guide: End-to-End Kubernetes ML 14



Development Patterns

Teams use three main patterns with ModelKits, each suited

to different workflows and compliance requirements:

Automatic Packaging Post-Training:

Create a new ModelKit automatically when training runs
complete successfully. The SDK packages resulting assets
and pushes them to the registry without manual intervention.
This pattern works for teams wanting immediate packaging

or needing all runs packaged for compliance reasons.

Selective Packaging of Champion Models:

Package only models meeting performance thresholds. The
SDK can query experiment tracking tools for runs matching
specific criteria - accuracy above threshold, loss below target
- then package only qualifying models. This keeps production
registries focused on production-ready candidates.

Milestone-Based Packaging:

Most teams create ModelKits at key milestones: when
validation passes, metrics meet thresholds, or models are
ready for promotion to staging. This balances governance
benefits with development velocity. During active
experimentation, artifacts remain in existing tools (MLflow,
feature stores, S3). When ready for promotion, package
everything into a ModelKit for reliable handoff to downstream
teams.

For regulated industries, automatic packaging of all runs
provides complete auditability. For non-regulated industries,
milestone-based packaging minimizes workflow disruption

while enabling reliable production deployments.

Technical Guide: End-to-End Kubernetes ML 15



Best Practices

m \Version everything together from the start - retroactive
versioning is painful

m Use semantic versioning for ModelKits to signal breaking
changes

m Tag ModelKits with meaningful metadata for searchability

m Automate ModelKit creation in CI pipelines rather than
manual packing

m Test unpacked ModelKits in staging before production

deployment

The goal isn't to replace your existing ML infrastructure - it's
to give you a better way to package and distribute AI/ML
projects through infrastructure you already have. Container
registries, Kubernetes, CI/CD pipelines - ModelKits work with

the tools your platform team already maintains.

Technical Guide: End-to-End Kubernetes ML 16



Securing the Project

Registry Integration and Authentication

Jozu Hub extends your existing OCI registry with enterprise
governance capabilities. Most organizations attach Jozu Hub
to their current registry infrastructure—Amazon ECR, JFrog
Artifactory, or similar—rather than deploying a separate
system. This keeps authentication and authorization
unchanged. ModelKits use the same RBAC policies, identity
management, and access controls already governing

container images.

Teams typically separate projects through registry
namespaces. The fraud-detection team maintains their
ModelKits independently from customer-segmentation, yet
both inherit the same security scanning, policy enforcement,
and audit logging. This structure provides autonomy within

governance boundaries without fragmenting infrastructure.

Automated Security Scanning

Every ModelKit pushed to Jozu Hub triggers multi-layered
security analysis targeting AI/ML-specific attack vectors for

generative Al and machine learning models. This addresses

Technical Guide: End-to-End Kubernetes ML 17



the unique security challenges that emerge when models
become production systems - threats that traditional

vulnerability scanning misses entirely.

The scanning framework employs five specialized scanners
operating in concert. Each addresses specific attack vectors
while maintaining complete on-premises deployment
capability - critical for organizations with strict data
sovereignty requirements. All tools run self-hosted with no
dependency on external APIs or cloud services, ensuring
compliance with regulatory requirements while keeping

ModelKit data entirely within organizational infrastructure.

Attack Vector Coverage

Supply Chain Protection:

Serialized model files in pickle, joblib, HDF5, ONNX, and
TensorFlow SavedModel formats can execute arbitrary code
during loading. Static analysis examines these files for
malicious deserialization payloads and embedded code
before they reach runtime environments. This prevents
compromised models from entering your pipeline disguised
as legitimate artifacts. Behavioral validation provides
secondary verification by testing whether models exhibit

suspicious runtime behavior patterns.

Content Safety Validation:
Models and their associated data undergo safety checks
across multiple dimensions. Prompt templates get scanned

for injection patterns that could override system instructions.

Technical Guide: End-to-End Kubernetes ML 18



Training data gets analyzed for PII exposure, toxic content,
and embedded secrets. Configuration files get checked for
exposed credentials. Code artifacts get examined for
malicious patterns. This multi-layer scanning ensures
ModelKits don't inadvertently contain sensitive information
or harmful content that could compromise production

systems or violate data protection regulations.

Behavioral Red-Teaming:

Automated probes test how models respond to adversarial
inputs through systematic attack simulation. Prompt
injection testing attempts to override system instructions
with malicious prompts. Policy evasion probes try to trick
models into violating guidelines. Data exfiltration testing
checks whether attackers can extract training data through
carefully crafted queries. System prompt leakage detection
verifies whether users can discover internal instructions.
Each probe generates risk scores that inform deployment
decisions—models failing critical probes get blocked from

production automatically.

Adversarial Robustness Testing:

Sophisticated attacks attempt to fool models through
carefully crafted inputs. Evasion attack testing evaluates
whether adversarial examples can cause misclassification.
Poisoning vulnerability detection analyzes training data for
evidence of manipulation. Model extraction resistance
testing measures whether attackers can steal model logic
through repeated querying. Membership inference testing
determines if attackers can discover whether specific data
was in the training set. This deep analysis is critical for
models making security decisions, processing financial

transactions, or handling untrusted user input.

Technical Guide: End-to-End Kubernetes ML

19



Privacy Protection:

Models can leak sensitive information through multiple
channels. PII scanning examines training data, prompts, and
configuration files for exposed personal information—names,
addresses, financial data, health records—that shouldn't be in
production systems. Membership inference testing
determines whether attackers can discover if specific
individuals' data was included in training sets, a critical
concern under GDPR and similar privacy regulations. Data
leakage detection identifies whether models inadvertently
memorize and reproduce training data when queried with
specific prompts. This dual-layer approach catches privacy
risks before they become compliance violations or security

incidents.

Model Integrity:

Compromised models pose existential risks to Al systems.
Backdoor detection searches for hidden triggers embedded
in model weights that could activate malicious behavior when
specific inputs appear. These backdoors can survive training
and remain dormant until exploited. Poisoning vulnerability
analysis examines training data for evidence of
manipulation—mislabeled examples, adversarial samples, or
biased data injected to corrupt model behavior. Statistical
analysis detects anomalies indicating poisoning attempts.
While detection is moderate (sophisticated backdoors and
poisoning can evade analysis), the scanning provides
baseline protection against known attack patterns and

obvious manipulation attempts.

Technical Guide: End-to-End Kubernetes ML 20



Regression Prevention:

Reproducible test suites measure jailbreak resistance and
prompt robustness across model iterations. This ensures
models maintain consistent security posture as they evolve
and that updates don't introduce new vulnerabilities. Tests
run automatically on every ModelKit push, catching

degradation before it reaches production.

Policy-Driven Scanning Tiers

Not every ModelKit requires identical scrutiny. The policy
engine routes ModelKits to appropriate scanning tiers based
on configurable YAML policies that evaluate model

characteristics and deployment context.

Essential Tier provides rapid baseline security for
experimental models during active development.
Supply chain attack checks verify model file integrity.
Optional content safety scanning adds basic validation for
PII and secrets. This tier completes within 5 minutes,
enabling fast iteration without sacrificing fundamental
security. It targets models that won't leave development
environments but still need protection against obvious

threats.

Standard Tier balances thoroughness with efficiency for
staging deployments and integration testing.

Required checks include supply chain protection and
comprehensive content safety validation. Optional
assessments add behavioral red-teaming and adversarial

testing based on model type and risk profile.

Technical Guide: End-to-End Kubernetes ML 21



This 15-minute scan provides solid coverage for most
production candidates. It's the default tier for models moving
from development to QA or staging environments where

they'll face more realistic testing conditions.

Comprehensive Tier applies maximum scrutiny to
critical production models serving real users or handling
sensitive data.

All security checks execute with extensive test suites.
Adversarial robustness testing runs with GPU acceleration to
handle computationally intensive attack simulations within
acceptable timeframes. While requiring up to 60 minutes,
this tier ensures models meet the highest security standards
for regulated deployments. It's mandatory for models in
healthcare, financial services, or other domains where model
failures carry serious consequences—both technical and

regulatory.

The policy engine selects tiers by evaluating multiple factors:
model size (larger models receive more thorough scanning),
deployment target (production tags trigger comprehensive
assessment), model type (LLMs and multimodal models
require specialized testing), and custom organizational
policies. For example, a policy might route all LLMs to
Comprehensive Tier regardless of size, or require Standard
Tier for any model tagged for customer-facing deployment.
Teams configure these rules through YAML policies that
adjust as requirements evolve, enabling governance without
blocking development velocity.

Technical Guide: End-to-End Kubernetes ML 22



Attack Vector Completeness and Limitations

This multi-dimensional scanning approach provides strong to
excellent coverage across most AI/ML security threats.
However, upload-time scanning has inherent limitations that
highlight the importance of defense in depth. Stateful attacks
involving multi-turn conversations or memory manipulation
cannot be fully tested without deployment context. These
require runtime monitoring to detect. Integration attacks
targeting plugin interactions or API abuse need actual
integrations to manifest. Performance attacks attempting
denial-of-service through resource exhaustion require actual
infrastructure to measure impact. Behavioral drift (models

changing behavior over time) only emerges during operation.

These limitations don't diminish the framework's value, they
define its role in a broader security strategy. Upload-time
scanning shifts security testing earlier in the cycle and
prevents known vulnerabilities from reaching production.
Runtime monitoring catches behavioral issues that only
emerge during operation. Together, they provide

comprehensive protection across the model lifecycle.

Security Attestations

Every scan generates cryptographically signed attestations

documenting results in a standardized JSON format.

Technical Guide: End-to-End Kubernetes ML 23



These attestations become immutable records attached to
ModelKits using Cosign, providing auditable evidence of

security assessments that can't be tampered with or forged.

The attestation captures comprehensive details: tool
identification with versions, ModelKit reference with
SHA-256 digest, metric definitions with pass/fail thresholds,
individual findings with severity levels (info, anomaly,
concern, error), and execution metadata including timing and
configuration. Each security check contributes one evaluation
run to a unified document, creating a complete security

picture for the ModelKit.

These attestations serve multiple purposes throughout the
deployment lifecycle. Deployment systems check attestations
before allowing production releases—no attestation or failed
checks mean no deployment, enforced at the infrastructure
level. Compliance audits use them as evidence of security
diligence, demonstrating that models underwent thorough
testing before serving users. Incident investigations
reference them to understand model vulnerabilities and trace
security decisions back to specific findings. The
cryptographic signatures ensure attestations haven't been
tampered with, maintaining chain of custody from scanning

through deployment and into audit review.

The framework evolves continuously as new attack vectors
emerge. The modular architecture enables adding new
security checks without disrupting existing workflows.
Scanner capabilities update automatically to detect the
latest attack patterns. Policies adjust to reflect changing
organizational requirements. The result: security that
improves over time while maintaining the same
interface—push a ModelKit, receive comprehensive security
assessment.

Technical Guide: End-to-End Kubernetes ML 24



Policy Enforcement and Governance

Approval workflows transform deployment from uncontrolled
progression to governed transition. A data scientist pushes a
model—it enters quarantine. Security scanning passes—it
awaits business approval. Manager approves—it becomes
eligible for staging. Each gate is enforced at the registry level

through policy evaluation.

Environment restrictions prevent models from jumping
stages. Development models cannot deploy to production.
Healthcare models require HIPAA attestations. Financial
models need SOX compliance checks. Jozu Hub blocks

non-compliant deployments automatically.

Compliance attestations attach to ModelKits as
cryptographically signed statements verifiable by auditors.
"This model was trained on anonymized data." "This model
passed fairness testing." "This model complies with GDPR."
These aren't code comments—they're signed claims with

chain of custody.

Technical Guide: End-to-End Kubernetes ML 25



Production Deployment on
Kubernetes

Basic Deployment Pattern

You can deploy a ModelKit to Kubernetes using standard

patterns. Here's a deployment for a model serving endpoint:

apiVersion: apps/vl
kind: Deployment
metadata:
name: fraud-detection
spec:
replicas: 3
selector:
matchLabels:
app: fraud-detection
template:
metadata:
labels:
app: fraud-detection
modelkit-version: "1.0.0"
spec:
initContainers:
- name: unpack-modelkit
image: ghcr.io/jozu-ai/kit:latest
command: ['kit', 'unpack', 'myregistry.com/fraud-detection:1.0.0', '-d', '/mnt/modelkit']
volumeMounts:
- name: modelkit-storage
mountPath: /mnt/modelkit

containers:
- name: inference-server
image: myregistry.com/inference-runtime: latest
volumeMounts:
- name: modelkit-storage
mountPath: /mnt/modelkit
env:
- name: MODEL_PATH
value: /mnt/modelkit/models/fraud_model.onnx
— name: CONFIG_PATH
value: /mnt/modelkit/config/model_config.yaml

volumes:

- name: modelkit-storage
emptyDir: {}

Technical Guide: End-to-End Kubernetes ML 26



The init container unpacks the ModelKit before the inference
server starts. The inference server loads the model, code,
and configuration from the unpacked location. Everything
needed to run the model is present and versioned together.
More importantly, everything can be tied back to the
ModelKit and even to the experiment run or notebook that
the ModelKit was built from!

Immutable Deployments

Traditional model deployment often looks like this: update a
model file in object storage, restart pods, hope the code still
matches. With ModelKits, you reference a specific version in
your deployment spec. That version never changes.

To update the ModelKit reference and apply the new
deployment:

- image: ghcr.io/jozu-ai/kit:latest
command: ['kit', ‘'unpack', 'myregistry.com/fraud-detection:1.1.0', '-d', '/mnt/modelkit']

Kubernetes handles the rollout. If something breaks, roll back
by reverting the deployment to reference the previous
ModelKit version. No hunting through logs to figure out which
S3 bucket had which model file.

Technical Guide: End-to-End Kubernetes ML 27



Integration with Model Serving Platforms

KServe's storage initializer architecture enables direct
ModelKit integration without custom serving code. A
ModelKit-specific storage initializer handles the kit://
protocol, pulling ModelKits from your registry, verifying their
SHA-256 digests, and unpacking artifacts into serving
containers. This maintains the security chain through to
inference - the same immutable artifacts that passed

security scanning are exactly what serves predictions.

apiVersion: serving.kserve.io/vlalphal
kind: ClusterStorageContainer
metadata:
name: kitops
spec:
container:
name: storage-initializer
image: ghcr.io/kitops-ml/kitops-kserve:latest
imagePullPolicy: Always
env:
- name: KIT_UNPACK_FLAGS
value: "" # Additional flags for “kit unpack®
resources:
requests:
memory: 100Mi
cpu: 100m
limits:
memory: 1Gi
supportedUriFormats:
- prefix: kit://

Authentication leverages Kubernetes-native patterns. Service
accounts control which clusters can access which ModelKits.
Development clusters cannot pull production models.

Production clusters cannot access experimental models. This

enforces environment boundaries at the infrastructure level.

Technical Guide: End-to-End Kubernetes ML 28



The ModelKit URI (kit://myregistry.com/fraud-detection:1.0.0)
replaces traditional S3 URIs pointing to mutable buckets.
This single change transforms deployments from hopeful to
deterministic. The ModelKit structure ensures the URI points
to model weights, preprocessing code, configuration, and

documentation as a complete package.

Performance and Automation

ModelKit manifests (Kitfiles) can include resource
requirements from training, enabling KServe to allocate
appropriate CPU, memory, and GPU resources without

manual specification.

Performance optimization through caching reduces registry
load and deployment time. KServe's persistent volume
caching stores unpacked ModelKits locally. Subsequent
deployments check cache validity against SHA-256 digests
from your registry. Changed models trigger fresh pulls.
Unchanged models serve from cache. This balances security
verification with operational efficiency - every deployment
confirms artifact integrity without repeatedly downloading

gigabytes of unchanged model weights.

Technical Guide: End-to-End Kubernetes ML 29



Tracking Across Environments

Experiment tracking tools like MLflow or Weights & Biases
version models well. They're less helpful for versioning the
code that loads those models, the data that trained them, or
the configuration that controls behavior. When you promote a
model from staging to production, you're not just moving

model weights - you're moving an entire project.

ModelKits make this explicit. Your staging environment tests
ModelKit version x.y.z. If tests pass, production deploys the
same version x.Yy.z. Not a new model file with "hopefully the

same code" - the exact same immutable project package.

Several research laboratories working with sensitive data
chose self-hosted ModelKit registries specifically because
their CI/CD runs in air-gapped environments. They needed to
version and distribute complete AI projects without external
dependencies or cloud services. The OCI standard made this

straightforward with existing container registry infrastructure.

CI/CD Integration

Automated pipelines benefit most from project-level
versioning. When your training pipeline produces a new
model, you want to test the entire project - not just the model

weights.

Technical Guide: End-to-End Kubernetes ML 30



GitHub Actions Example

name: Train and Deploy Model
on:
push:
branches: [main]

jobs:
train-and-package:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3

- name: Train model
run: python train.py

- name: Run validation tests
run: pytest tests/

- name: Install Kit CLI
run: |
curl -L https://github.com/jozu-ai/kitops/releases/latest/download/kit-1linux—amd64.tar.gz | tar xz
sudo mv kit /usr/local/bin/

- name: Package ModelKit
run: |
kit pack . -t ${{ secrets.REGISTRY }}/fraud-detection:${{ modelkit.SHA }}
kit push ${{ secrets.REGISTRY }}/fraud-detection:${{ modelkit.SHA }}

- name: Deploy to staging
run: |
kubectl set image deployment/fraud-detection \
unpack-modelkit=ghcr.io/jozu-ai/kit: latest \
——env="MODELKIT_REF=${{ secrets.REGISTRY }}/fraud-detection:${{ modelkit.SHA }}"

This pipeline trains a model, packages the complete project
into a ModelKit, and deploys it to staging. Adding the
specific SHA to the ModelKit reference (modelkit.SHA) ties
the deployment to a specific ModelKit version, giving you
complete traceability.

ModelKits can be used with any pipeline that can consume
containers or OCI Artifacts.

Technical Guide: End-to-End Kubernetes ML 31



Advanced Deployment Patterns

A/B testing through traffic splitting requires unambiguous
model identification. Tag-based promotion enables clear

experiment definition using KServe's traffic management:

apiVersion: serving.kserve.io/vlbetal
kind: InferenceService
metadata:
name: fraud-detection
spec:
predictor:
canaryTrafficPercent: 20
model:
modelFormat:
name: onnx
storageUri: kit://myregistry.com/fraud-detection:champion
canary:
model:
modelFormat:
name: onnx
storageUri: kit://myregistry.com/fraud-detection:challenger

The fraud-detection:champion ModelKit receives 80% of
traffic while fraud-detection:challenger receives 20%.
Metrics collection happens at the ModelKit level, enabling
direct comparison between versions. When the challenger
outperforms the champion, promotion means retagging - the
same immutable artifact that served 20% of traffic now
serves 100%.

Canary Deployments with Automated Rollback

Canary deployments reduce risk for critical models through

gradual rollout with automated rollback. New versions receive

Technical Guide: End-to-End Kubernetes ML 32



minimal traffic initially - 1% or less - with automatic rollback
triggers if error rates spike or latencies degrade. ModelKit
immutability guarantees rollback returns to an exact previous

state, not a reconstructed approximation.

KServe monitors metrics, compares against thresholds
defined in deployment policies, and reverts to the previous
ModelKit version if the canary fails validation. Because
ModelKits are immutable, these rollbacks complete in

seconds rather than minutes or hours.

Multi-Model Ensemble Serving

Complex Al systems often combine multiple models for
ensemble predictions. A fraud detection system might
combine transaction analysis, user behavior modeling, and
network graph analysis. Each model exists as a separate
ModelKit, versioned independently but deployed together:

Technical Guide: End-to-End Kubernetes ML 33



apiVersion: serving.kserve.io/vlbetal
kind: InferenceService
metadata:
name: fraud-ensemble
spec:
predictor:
containers:
- name: transaction-analyzer
image: myregistry.com/inference-runtime: latest
env:
— name: MODELKIT_URI
value: kit://myregistry.com/transaction-analyzer:v3
- name: behavior-model
image: myregistry.com/inference-runtime: latest
env:
- name: MODELKIT_URI
value: kit://myregistry.com/behavior-model:v7
- name: ensemble-orchestrator
image: myregistry.com/ensemble-server: latest

Metadata or tagging ensures compatible versions deploy as
a unit - transaction-analyzer:v3 only deploys with
behavior-model:v7, preventing version mismatches that
could degrade ensemble performance. Each component
ModelKit maintains its own security scanning results and

audit trail while functioning as part of a larger system.

Technical Guide: End-to-End Kubernetes ML 34



Team Collaboration and
Governance

Shared Project State

Making an Al project successful takes a village: data
scientists create ModelKits during development, ML
engineers test them in staging, platform engineers deploy
them in production, DevOps teams manage the registry, and
Security teams scan the artifacts. Everyone references the
same versioned project.

When someone asks "what's running in production,” the
answer is an immutable ModelKit reference:
myregistry.com/fraud-detection:1.0.0. That reference tells you
everything: which model, which code, which data, which
configuration. Stop using spreadsheets to track deployment
versions and Slack messages asking "did we deploy the

model trained on the new data or the old data?"

Technical Guide: End-to-End Kubernetes ML 35



Audit and Compliance

Regulated industries need to answer questions like: "What
model version processed this transaction? What data trained

that model? Who approved the deployment?"

ModelKits provide project-level lineage. The Kitfile metadata
includes training information, model metrics, and authorship.
Registry access logs show who pushed and pulled which

versions, while Kubernetes labels tie running pods to specific

ModelKit versions.

When auditors ask for evidence, you can point to immutable
artifacts with complete provenance and lineage rather than
trying to reconstruct history from scattered logs and git

commits.

Technical Guide: End-to-End Kubernetes ML 36



Troubleshooting and Debugging

Version Comparison

When a newly deployed model behaves differently than
expected, you don’t need to hunt through multiple logs, just
compare ModelKit versions:

kit diff myregistry.com/fraud-detection:1.0.0

myregistry.com/fraud-detection:1.1.0

The kit diff command shows what changed between

versions in the terminal.

Jozu Hub provides a UI for visual comparison with
line-by-line diffs of changes: updated model files, modified
preprocessing code, different hyperparameters, dataset
changes, or prompt rewrites. Security scans run automatically
on each version, surfacing new vulnerabilities immediately.
You're not guessing what changed - you're examining the

immutable record of project state with full security context.

Technical Guide: End-to-End Kubernetes ML 37



Reproducing Issues Locally

To pull the exact ModelKit version running in production:

kit pull myregistry.com/fraud-detection:champion

kit unpack myregistry.com/fraud-detection:champion -vv ./debug

Now you have the production project state on your laptop.
Run the inference code with the production model and
configuration. Feed it the problematic input. Debug with full
context instead of trying to reproduce production conditions

from memory.

Rollback Procedures

Rolling back to the previous ModelKit version can be done

through your serving platform:

kubectl set image deployment/fraud-detection \
unpack-modelkit=ghcr.io/jozu-ai/kit:latest \

—-env="MODELKIT_REF=myregistry.com/fraud-detection:1.0.0"

Kubernetes performs a standard rolling update back to the
working version. Because ModelKits are immutable, you know

exactly what you're rolling back to.

Technical Guide: End-to-End Kubernetes ML 38



Production Monitoring and Drift Detection

Prometheus metrics collection extends beyond standard
HTTP metrics to capture model-specific behavior. Prediction
latency distributions, confidence score patterns, feature value
ranges, and inference throughput all link back to ModelKit

versions, enabling version-specific analysis:

# Sample Prometheus metrics using ModelKit SHA as IDs
modelkit_prediction_latency_seconds{modelkit="fraud-detection${SHA}"} 0.045
modelkit_prediction_confidence{modelkit="fraud-detection${SHA}"} 0.87
modelkit_prediction_count{modelkit="fraud-detection${SHA}", result="fraud"} 42

When metrics degrade after deploying
fraud-detection:SHA, teams can use the SHA to compare
the in-production ModelKit and diff against previous known
good deployments. Or, using the SHA and ModelKit trace
back to the experiment run that generated the model and
check runtime metrics against tested metrics to isolate the

regression.

Drift detection requires baseline comparisons that ModelKits
provide naturally. The validation datasets included in
ModelKits during development establish performance
baselines - expected accuracy, precision, recall, and
confidence distributions. Production predictions get
compared against these baselines through statistical tests

that identify significant deviations.

When drift exceeds configurable thresholds, automated
retraining pipelines trigger, creating feedback loops back to

development workflows. Automatic rollback triggers prevent

Technical Guide: End-to-End Kubernetes ML 39



prolonged outages when models degrade in production.
When error rates spike, latencies increase beyond SLAs, or
drift accelerates past emergency thresholds, KServe can

automatically revert to previous ModelKit versions.

This closes the loop from development through security to
production operations. Models packaged as ModelKits,
secured through scanning, promoted through pipelines, now
serve predictions with full observability and automated
recovery. The atomic unit established at the beginning - the
ModelKit - maintains its integrity and traceability through

every stage of the lifecycle.

Technical Guide: End-to-End Kubernetes ML 40



Conclusion:

Moving AI/ML projects from development to production
requires more than deploying model weights. Teams must
coordinate models, code, datasets, configurations, and
dependencies across environments while maintaining
security, auditability, and reproducibility. The traditional
approach of managing these components separately creates
operational overhead, increases debugging time, and

introduces deployment risk.

ModelKits solve this by treating the complete AI/ML project
as a single, versioned unit. By packaging everything needed
to reproduce a working system into an OCI artifact, teams
leverage existing container infrastructure instead of building
parallel systems. The same registries that store container
images now store complete AI/ML projects. The same CI/CD
pipelines that deploy applications now deploy models. The
same security scanning that protects code now protects Al

workloads.

This matters because it reduces the risk of production issues
and shortens time-to-recovery for when outages do happen.
The fact that it typically speeds time-to-production is a

bonus.

The operational benefits compound over time. Debugging
sessions that once took days now take hours because you
can compare exact project states across versions. Audit

preparation that once took weeks now takes days because

you have complete provenance for every deployed model.



Deployment failures that once required hunting through

multiple systems now point to a single ModelKit reference.

For organizations requiring enhanced security and
compliance, Jozu Hub extends the ModelKit pattern with
automated vulnerability scanning, compliance reporting, and
deployment controls specifically designed for AI/ML
workloads in regulated industries. From five-layer security
scanning that catches Al-specific vulnerabilities to KServe
integration with automated drift detection, ModelKits
transform every stage of the ML lifecycle from fragile

coordination into reliable operations.



Next Steps

Start with a single AI/ML project. Package it as a ModelKit.
Deploy it to a test Kubernetes cluster. Experience the
difference between managing versioned project state versus

manually coordinating model files, code, and configuration.

Get started:

m Install Kit CLI; https://github.com/jozu-ai/kitops

m Review example Kitfiles in the repository

m Join the KitOps community on Discord for technical
support

m Learn more about Jozu: jozu.com

m Schedule a Jozu POV: https:/jozu.com/fast-and-secure/

m Get enterprise support for KitOps:
https://jozu.com/kitops-modelpack-support/


https://github.com/jozu-ai/kitops
http://jozu.com
https://jozu.com/fast-and-secure/
https://jozu.com/kitops-modelpack-support/

	 
	Index 
	Executive Summary 
	 

	Introduction 
	 

	What is a ModelKit? 
	Why OCI Artifacts? 
	ModelKit Structure 

	Development Workflow 
	Creating Your First ModelKit 
	Why Not Just Use Experiment Trackers? 
	Local Development and Testing 
	 

	Updating and Versioning 
	Handling Large Datasets 
	Development Patterns 
	Best Practices 

	Securing the Project 
	Registry Integration and Authentication 
	Automated Security Scanning 
	Attack Vector Coverage 
	Policy-Driven Scanning Tiers 
	Attack Vector Completeness and Limitations 
	Security Attestations 
	Policy Enforcement and Governance 

	Production Deployment on Kubernetes 
	Basic Deployment Pattern 
	Immutable Deployments 
	Integration with Model Serving Platforms 
	Performance and Automation 
	Tracking Across Environments 
	CI/CD Integration 
	GitHub Actions Example 

	Advanced Deployment Patterns 
	Canary Deployments with Automated Rollback 
	Multi-Model Ensemble Serving 


	Team Collaboration and Governance 
	Shared Project State 
	Audit and Compliance 

	Troubleshooting and Debugging 
	Version Comparison 
	 

	 
	Reproducing Issues Locally 
	Rollback Procedures 
	Production Monitoring and Drift Detection 

	Conclusion:  
	Next Steps 


